Skip to main content

Bioimpedance and Bioreactance

  • Chapter
Hemodynamic Monitoring

Part of the book series: Lessons from the ICU ((LEICU))

  • 3986 Accesses

Abstract

This chapter covers:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altzer E, Lehmann G. Uber ein neues Verfarhen zur Darstellung der Herztätigkreit (Dielecktrogaphie). Arbeitsphysiologie. 1932;5:636–80.

    Google Scholar 

  2. Nyboer J, Bango S, Barnett A, Halsey R. Radiocardiograms: electrical impedance changes of the heart in relation to electrocardiograms and heart sounds. J Clin Invest. 1940;19:773.

    Google Scholar 

  3. Bonjer FH, Van Den Berg J, Dirken MN. The origin of the variations of body impedance occurring during the cardiac cycle. Circulation. 1952;6:415–20.

    CAS  PubMed  Google Scholar 

  4. Thomasset A. Bio-electrical properties of tissue impedance measurements. Lyon Med. 1962;207:107–18.

    Google Scholar 

  5. Hoffer EC, Meador CK, Simpson DC. Correlation of whole-body impedance with total body water volume. J Appl Physiol. 1969;27:531–4.

    CAS  PubMed  Google Scholar 

  6. Kubicek W, Patterson R, Witsoe D. Development and evaluation of an impedance cardiac output system. Aerospace Med. 1966;37:1208–12.

    CAS  PubMed  Google Scholar 

  7. Tishchenko MI, Smirnov AD, Danilov LN, Aleksandrov AL. Characteristics and clinical use of integral rheography--a new method of measuring the stroke volume. Kardiologiia. 1973;13:54–62.

    CAS  PubMed  Google Scholar 

  8. Sramek B. Non-invasive technique for measurements of cardiac output by mean of electrical impedance. Proceedings of the Fifth International Conference on Electrical Bioimpedance, Tokyo , Japan 1981, p. 39–42.

    Google Scholar 

  9. Bernstein DP. A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Crit Care Med. 1986;14:904–9.

    CAS  PubMed  Google Scholar 

  10. Perko G, Perko MJ, Jansen E, Secher NH. Thoracic impedance as an index of body fluid balance during cardiac surgery. Acta Anaesthesiol Scand. 1991;35:568–71.

    CAS  PubMed  Google Scholar 

  11. Pomerantz M, Baumgartner R, Lauridson J, Eiseman B. Transthoracic electrical impedance for the early detection of pulmonary edema. Surgery. 1969;66:260–8.

    CAS  PubMed  Google Scholar 

  12. Graziani G, Badalamenti S, Como G, Ambroso G, Gazzano G, Finazzi S, Mangiarotti R, Morganti A. Validation study of thoracic fluid bioimpedance for assessing the haemodialysis-induced changes in total body fluids. Blood Purif. 1994;12:106–12.

    CAS  PubMed  Google Scholar 

  13. Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol. 2007;293:H583–9.

    CAS  PubMed  Google Scholar 

  14. Barin E, Haryadi D, Schookin S, Westenskow D, Zubenko V, Beliaev K, Morozov A. Evaluation of a thoracic bioimpedance cardiac output monitor during cardiac catheterization. Crit Care Med. 2000;28:698–702.

    CAS  PubMed  Google Scholar 

  15. Spiess B, Patel M, Soltow L, Wright I. Comparison of bioimpedance versus thermodilution cardiac output during cardiac surgery: evaluation of a second-generation bioimpedance device. J Cardiothorac Vasc Anesth. 2001;15:567–73.

    CAS  PubMed  Google Scholar 

  16. Squara P, Denjean D, Estagnasie P, Brusset A, Dib JC, Dubois C. Noninvasive cardiac output monitoring (NICOM): a clinical validation. Intensive Care Med. 2007;33:1191–4.

    PubMed  Google Scholar 

  17. Bernstein DP. Continuous noninvasive real-time monitoring of stroke volume and cardiac output by thoracic electrical bioimpedance. Crit Care Med. 1986;14:898–901.

    CAS  PubMed  Google Scholar 

  18. Squara P, Cecconi M, Rhodes A, Singer M, Chiche JD. Tracking changes in cardiac output: methodological considerations for the validation of monitoring devices. Intensive Care Med. 2009;35:1801–8.

    PubMed  Google Scholar 

  19. Squara P, Imhoff M, Cecconi M. Metrology in medicine: from measurements to decision, with specific reference to anesthesia and intensive care. Anesth Analg. 2015;120:66–75.

    CAS  PubMed  Google Scholar 

  20. Nierman DM, Eisen DI, Fein ED, Hannon E, Mechanick JI, Benjamin E. Transthoracic bioimpedance can measure extravascular lung water in acute lung injury. J Surg Res. 1996;65:101–8.

    CAS  PubMed  Google Scholar 

  21. Newman RB, Pierre H, Scardo J. Thoracic-fluid conductivity in peripartum women with pulmonary edema. Obstet Gynecol. 1999;94:48–51.

    CAS  PubMed  Google Scholar 

  22. Saunders CE. The use of transthoracic electrical bioimpedance in assessing thoracic fluid status in emergency department patients. Am J Emerg Med. 1998;6:337–40.

    Google Scholar 

  23. Metry G, Mallmin H, Wikstrom B, Danielson BG. Proportional changes in body fluid with hemodialysis evaluated by dual-energy X-ray absorptiometry and transthoracic bioimpedance with particular emphasis on the thoracic region. Artif Organs. 1997;21:969–76.

    CAS  PubMed  Google Scholar 

  24. Zerahn B, Jensen BV, Olsen F, Petersen JR, Kanstrup IL. The effect of thoracentesis on lung function and transthoracic electrical bioimpedance. Respir Med. 1999;93:196–201.

    CAS  PubMed  Google Scholar 

  25. Peacock WI, Albert NM, Kies P, White RD, Emerman CL. Bioimpedance monitoring: better than chest x-ray for predicting abnormal pulmonary fluid? Congest Heart Fail. 2000;6:86–9.

    PubMed  Google Scholar 

  26. Moharram EE, El Attar AM, Kamel MA. The impact of anesthesia on hemodynamic and volume changes in operative hysteroscopy: a bioimpedance randomized study. J Clin Anesth. 2017;38:59–67.

    CAS  PubMed  Google Scholar 

  27. Malfatto G, Blengino S, Perego GB, Branzi G, Villani A, Facchini M, Parati G. Transthoracic impedance accurately estimates pulmonary wedge pressure in patients with decompensated chronic heart failure. Congest Heart Fail. 2012;18:25–31.

    CAS  PubMed  Google Scholar 

  28. Cagini L, Capozzi R, Tassi V, Savignani C, Quintaliani G, Reboldi G, Puma F. Fluid and electrolyte balance after major thoracic surgery by bioimpedance and endocrine evaluation. Eur J Cardiothorac Surg. 2011;40:e71–6.

    PubMed  Google Scholar 

  29. Malfatto G, Branzi G, Giglio A, Villani A, Facchini C, Ciambellotti F, Facchini M, Parati G. Transthoracic bioimpedance and brain natriuretic peptide levels accurately indicate additional diastolic dysfunction in patients with chronic advanced systolic heart failure. Eur J Heart Fail. 2010;12:928–35.

    CAS  PubMed  Google Scholar 

  30. Cuba-Gyllensten I, Gastelurrutia P, Bonomi AG, Riistama J, Bayes-Genis A, Aarts RM. A method to adapt thoracic impedance based on chest geometry and composition to assess congestion in heart failure patients. Med Eng Phys. 2016;38:538–46.

    Google Scholar 

  31. Kamath SA, Drazner MH, Tasissa G, Rogers JG, Stevenson LW, Yancy CW. Correlation of impedance cardiography with invasive hemodynamic measurements in patients with advanced heart failure: the BioImpedance CardioGraphy (BIG) substudy of the Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE) Trial. Am Heart J. 2009;158:217–23.

    PubMed  PubMed Central  Google Scholar 

  32. Kossari N, Hufnagel G, Squara P. Bioreactance: a new tool for cardiac output and thoracic fluid content monitoring during hemodialysis. Hemodial Int. 2009;13:512–7.

    PubMed  Google Scholar 

  33. Nescolarde L, Bogonez P, Calpe J, Hernandez R, Donate T, Rosell J. Whole-body and thoracic bioimpedance measurement: hypertension and hyperhydration in hemodialysis patients. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:3593–6.

    CAS  PubMed  Google Scholar 

  34. Genoni M, Pelosi P, Romand JA, Pedoto A, Moccetti T, Malacrida R. Determination of cardiac output during mechanical ventilation by electrical bioimpedance or thermodilution in patients with acute lung injury: effects of positive end-expiratory pressure. Crit Care Med. 1998;26:1441–5.

    CAS  PubMed  Google Scholar 

  35. Leslien S, McKee S, Newby D, Webb D, Denvir M. Non-invasive measurement of cardiac output in patients with chronic heart failure. Blood Press Monit. 2004;9:277–80.

    Google Scholar 

  36. Engoren M, Barbee D. Comparison of cardiac output determined by bioimpedance, thermodilution, and the Fick method. Am J Crit Care. 2005;14:40–5.

    PubMed  Google Scholar 

  37. Heringlake M, Handke U, Hanke T, Eberhardt F, Schumacher J, Gehring H, Heinze H. Lack of agreement between thermodilution and electrical velocimetry cardiac output measurements. Intensive Care Med. 2007;33:2168–72.

    PubMed  Google Scholar 

  38. Taylor K, Manlhiot C, McCrindle B, Grosse-Wortmann L, Holtby H. Poor accuracy of noninvasive cardiac output monitoring using bioimpedance cardiography [PhysioFlow(R)] compared to magnetic resonance imaging in pediatric patients. Anesth Analg. 2012;114:771–5.

    PubMed  Google Scholar 

  39. Thonnerieux M, Alexander B, Binet C, Obadia JF, Bastien O, Desebbe O. The ability of esCCO and ECOM monitors to measure trends in cardiac output during alveolar recruitment maneuver after cardiac surgery: a comparison with the pulmonary thermodilution method. Anesth Analg. 2015;121:383–91.

    PubMed  Google Scholar 

  40. Magliocca A, Rezoagli E, Anderson TA, Burns SM, Ichinose F, Chitilian HV. Cardiac output measurements based on the pulse wave transit time and thoracic impedance exhibit limited agreement with thermodilution method during orthotopic liver transplantation. Anesth Analg. 2017; https://doi.org/10.1213/ANE.0000000000002171.

  41. Boldt J, Kling D, Thiel A, Hempelmann G. Non-invasive versus invasive cardiovascular monitoring. Determination of stroke volume and pulmonary hydration using a new bioimpedance monitor. Anaesthesist. 1988;37:218–23.

    CAS  PubMed  Google Scholar 

  42. Ram M, Lavie A, Lev S, Blecher Y, Amikam U, Shulman Y, Avnon T, Weiner E, Many A. Cardiac hemodynamics before, during and after elective cesarean section under spinal anesthesia in low-risk women. J Perinatol. 2017; https://doi.org/10.1038/jp.2017.53.

  43. Keramidas ME, Kolegard R, Mekjavic IB, Eiken O. PlanHab: hypoxia exaggerates the bed-rest-induced reduction in peak oxygen uptake during upright cycle ergometry. Am J Physiol Heart Circ Physiol. 2016;311:H453–64.

    PubMed  Google Scholar 

  44. Gayda M, Normandin E, Meyer P, Juneau M, Haykowsky M, Nigam A. Central hemodynamic responses during acute high-intensity interval exercise and moderate continuous exercise in patients with heart failure. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee. Nutrition et Metabolisme. 2012;37:1171–8.

    CAS  Google Scholar 

  45. Marqué S, Cariou A, Chiche J, Squara P. Non Invasive Cardiac Output Monitoring (NICOM) compared to minimally invasive monitoring (VIGILEO). Crit Care. 2009;13(3):R73.

    PubMed  PubMed Central  Google Scholar 

  46. De Pascale G, Singer M, Brealey D. Comparison of stroke volume measurement between non-invasive bioreactance and esophageal Doppler in patients undergoing major abdominal-pelvic surgery. J Anesth. 2017;31:545–51.

    PubMed  Google Scholar 

  47. Fagnoul D, Vincent JL. Backer de D, Cardiac output measurements using the bioreactance technique in critically ill patients. Crit Care. 2012;16:460.

    PubMed  PubMed Central  Google Scholar 

  48. Conway DH, Hussain OA, Gall I. A comparison of noninvasive bioreactance with oesophageal Doppler estimation of stroke volume during open abdominal surgery: an observational study. Eur J Anaesthesiol. 2013;30:501–8.

    CAS  PubMed  Google Scholar 

  49. Trinkmann F, Schneider C, Michels JD, Stach K, Doesch C, Schoenberg SO, Borggrefe M, Saur J, Papavassiliu T. Comparison of bioreactance non-invasive cardiac output measurements with cardiac magnetic resonance imaging. Anaesth Intensive Care. 2016;44:769–76.

    CAS  PubMed  Google Scholar 

  50. Huang L, Critchley LA, Zhang J. Major upper abdominal surgery alters the calibration of bioreactance cardiac output readings, the NICOM, when comparisons are made against suprasternal and esophageal Doppler intraoperatively. Anesth Analg. 2015;121:936–45.

    PubMed  Google Scholar 

  51. Rosenblum H, Helmke S, Williams P, Teruya S, Jones M, Burkhoff D, Mancini D, Maurer MS. Peak cardiac power measured noninvasively with a bioreactance technique is a predictor of adverse outcomes in patients with advanced heart failure. Congest Heart Fail. 2010;16:254–8.

    PubMed  PubMed Central  Google Scholar 

  52. Myers J, Gujja P, Neelagaru S, Burkhoff D. Cardiac output and cardiopulmonary responses to exercise in heart failure: application of a new bio-reactance device. J Card Fail. 2007;13:629–36.

    PubMed  Google Scholar 

  53. Doherty A, El-Khuffash A, Monteith C, McSweeney L, Breatnach C, Kent E, Tully E, Malone F, Thornton P. Comparison of bioreactance and echocardiographic non-invasive cardiac output monitoring and myocardial function assessment in primagravida women. Br J Anaesth. 2017;118:527–32.

    CAS  PubMed  Google Scholar 

  54. Rich JD, Archer SL, Rich S. Noninvasive cardiac output measurements in patients with pulmonary hypertension. Eur Respir J. 2013;42:125–33.

    PubMed  Google Scholar 

  55. Engineer RS, Benoit JL, Hicks CW, Kolattukudy SJ, Burkhoff D, Peacock WF. Hemodynamic changes as a diagnostic tool in acute heart failure--a pilot study. Am J Emerg Med. 2012;30:174–80.

    PubMed  Google Scholar 

  56. Elliott A, Hull JH, Nunan D, Jakovljevic DG, Brodie D, Ansley L. Application of bioreactance for cardiac output assessment during exercise in healthy individuals. Eur J Appl Physiol. 2010;109:945–51.

    PubMed  Google Scholar 

  57. Khan FZ, Virdee MS, Hutchinson J, Smith B, Pugh PJ, Read PA, Fynn SP, Dutka DP. Cardiac resynchronization therapy optimization using noninvasive cardiac output measurement. Pacing Clin Electrophysiol. 2011;34:1527–36.

    PubMed  Google Scholar 

  58. Jones MA, Khiani R, Foley P, Webster D, Qureshi N, Wong KC, Rajappan K, Bashir Y, Betts TR. Inter- and intravein differences in cardiac output with cardiac resynchronization pacing using a multipolar LV pacing lead. Pacing Clin Electrophysiol. 2015;38:267–74.

    PubMed  Google Scholar 

  59. Wang JS, Wu MH, Mao TY, Fu TC, Hsu CC. Effects of normoxic and hypoxic exercise regimens on cardiac, muscular, and cerebral hemodynamics suppressed by severe hypoxia in humans. J Appl Physiol. 1985;109:219–29.

    Google Scholar 

  60. Benomar B, Ouattara A, Estagnasie P, Brusset A, Squara P. Fluid responsiveness predicted by noninvasive bioreactance-based passive leg raise test. Intensive Care Med. 2010;36:1875–81.

    PubMed  Google Scholar 

  61. Marik PE, Levitov A, Young A, Andrews L. The use of bioreactance and carotid Doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients. Chest. 2013;143:364–70.

    PubMed  Google Scholar 

  62. Okwose NC, Chowdhury S, Houghton D, Trenell MI, Eggett C, Bates M, MacGowan GA, Jakovljevic DG. Comparison of cardiac output estimates by bioreactance and inert gas rebreathing methods during cardiopulmonary exercise testing. Clin Physiol Funct Imaging. 2017; https://doi.org/10.1111/cpf.12442.

  63. Min JJ, Lee JH, Hong KY, Choi SJ. Utility of stroke volume variation measured using non-invasive bioreactance as a predictor of fluid responsiveness in the prone position. J Clin Monit Comput. 2017;31:397–405.

    PubMed  Google Scholar 

  64. Tremper KK, Hufstedler SM, Barker SJ, Zaccari J, Harris D, Anderson S, Roohk V. Continuous noninvasive estimation of cardiac output by electrical bioimpedance: an experimental study in dogs. Crit Care Med. 1986;14:231–3.

    CAS  PubMed  Google Scholar 

  65. Panagiotou M, Vogiatzis I, Jayasekera G, Louvaris Z, Mackenzie A, McGlinchey N, Baker JS, Church AC, Peacock AJ, Johnson MK. Validation of impedance cardiography in pulmonary arterial hypertension. Clin Physiol Funct Imaging. 2017; https://doi.org/10.1111/cpf.12408.

  66. Peyton PJ, Chong SW. Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision. Anesthesiology. 2010;113:1220–35.

    PubMed  Google Scholar 

  67. Joosten A, Desebbe O, Suehiro K, Murphy LS, Essiet M, Alexander B, Fischer MO, Barvais L, Van Obbergh L, Maucort-Boulch D, Cannesson M. Accuracy and precision of non-invasive cardiac output monitoring devices in perioperative medicine: a systematic review and meta-analysis. Br J Anaesth. 2017;118:298–310.

    CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

Pierre Squara was a consultant for Cheetah Medical between 2005 and 2010.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 European Society of Intensive Care Medicine

About this chapter

Cite this chapter

Nguyen, L.S., Squara, P. (2019). Bioimpedance and Bioreactance. In: Pinsky, M.R., Teboul, JL., Vincent, JL. (eds) Hemodynamic Monitoring. Lessons from the ICU. Springer, Cham. https://doi.org/10.1007/978-3-319-69269-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69269-2_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69268-5

  • Online ISBN: 978-3-319-69269-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics