Skip to main content

Arterial Pressure Waveform Analysis on Cardiac Output Monitoring

  • Chapter
Book cover Hemodynamic Monitoring

Part of the book series: Lessons from the ICU ((LEICU))

  • 4013 Accesses

Abstract

Among the current methods available for cardiac output monitoring, arterial pressure waveform analysis (APWA) is one of the most widely used. This technique allows the continuous estimation of cardiac output under the premise that there is a predictable relationship between arterial pressure and stroke volume. However, as the arterial pressure is the result of interaction between ventricular ejection and the arterial system, how the arterial system is characterized will ultimately define the characteristics and limitations of each APWA algorithm.

This chapter will describe the physiological assumptions of the APWA to understand the benefits and limitations of this technology, in order to use it appropriately to improve patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erlanger J, Hooker DR. An experimental study of blood-pressure and of pulse-pressure in man. Johns Hopkins Hosp Rep; 1904.

    Google Scholar 

  2. Monnet X, Letierce A, Hamzaoui O, Chemla D, Anguel N, Osman D, Richard C, Teboul JL. Arterial pressure allows monitoring the changes in cardiac output induced by volume expansion but not by norepinephrine. Crit Care Med. 2011;39:1394–9.

    Article  PubMed  Google Scholar 

  3. Monge Garcia MI, Saludes Orduna P, Cecconi M. Understanding arterial load. Intensive Care Med. 2016;42:1625–7.

    Article  PubMed  Google Scholar 

  4. Langewouters GJ, Wesseling KH, Goedhard WJ. The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J Biomech. 1984;17:425–35.

    Article  CAS  PubMed  Google Scholar 

  5. Reuter DA, Huang C, Edrich T, Shernan SK, Eltzschig HK. Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth Analg. 2010;110:799–811.

    Article  PubMed  Google Scholar 

  6. Monge Garcia MI, Romero MG, Cano AG, Rhodes A, Grounds RM, Cecconi M. Impact of arterial load on the agreement between pulse pressure analysis and esophageal Doppler. Crit Care. 2013;17:R113.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Geerts BF, Aarts LP, Jansen JR. Methods in pharmacology: measurement of cardiac output. Br J Clin Pharmacol. 2011;71:316–30.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Thiele RH, Durieux ME. Arterial waveform analysis for the anesthesiologist: past, present, and future concepts. Anesth Analg. 2011;113:766–76.

    Article  CAS  PubMed  Google Scholar 

  9. Meng L, Tran NP, Alexander BS, Laning K, Chen G, Kain ZN, Cannesson M. The impact of phenylephrine, ephedrine, and increased preload on third-generation Vigileo-FloTrac and esophageal doppler cardiac output measurements. Anesth Analg. 2011;113:751–7.

    Article  CAS  PubMed  Google Scholar 

  10. Monnet X, Anguel N, Jozwiak M, Richard C, Teboul JL. Third-generation FloTrac/Vigileo does not reliably track changes in cardiac output induced by norepinephrine in critically ill patients. Br J Anaesth. 2012;108:615.

    Article  CAS  PubMed  Google Scholar 

  11. Yamashita K, Nishiyama T, Yokoyama T, Abe H, Manabe M. The effects of vasodilation on cardiac output measured by PiCCO. J Cardiothorac Vasc Anesth. 2008;22:688–92.

    Article  PubMed  Google Scholar 

  12. Johansson A, Chew M. Reliability of continuous pulse contour cardiac output measurement during hemodynamic instability. J Clin Monit Comput. 2007;21:237–42.

    Article  PubMed  Google Scholar 

  13. Pinsky MR. Probing the limits of arterial pulse contour analysis to predict preload responsiveness. Anesth Analg. 2003;96:1245–7.

    Article  PubMed  Google Scholar 

  14. Peyton PJ, Chong SW. Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision. Anesthesiology. 2010;113:1220–35.

    Article  PubMed  Google Scholar 

  15. Bein B, Meybohm P, Cavus E, Renner J, Tonner PH, Steinfath M, Scholz J, Doerges V. The reliability of pulse contour-derived cardiac output during hemorrhage and after vasopressor administration. Anesth Analg. 2007;105:107–13.

    Article  PubMed  Google Scholar 

  16. De Backer D, Marx G, Tan A, Junker C, Van Nuffelen M, Huter L, Ching W, Michard F, Vincent JL. Arterial pressure-based cardiac output monitoring: a multicenter validation of the third-generation software in septic patients. Intensive Care Med. 2011;37(2):233–40.

    Article  PubMed  Google Scholar 

  17. Biais M, Mazocky E, Stecken L, Pereira B, Sesay M, Roullet S, Quinart A, Sztark F. Impact of systemic vascular resistance on the accuracy of the pulsioflex device. Anesth Analg. 2017;124:487–93.

    Article  PubMed  Google Scholar 

  18. Truijen J, van Lieshout JJ, Wesselink WA, Westerhof BE. Noninvasive continuous hemodynamic monitoring. J Clin Monit Comput. 2012;26:267–78.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cecconi M, Rhodes A. Pulse pressure analysis: to make a long story short. Crit Care. 2010;14:175.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Westerhof N, Lankhaar JW, Westerhof BE. The arterial Windkessel. Med Biol Eng Comput. 2009;47:131–41.

    Article  PubMed  Google Scholar 

  21. Montenij LJ, de Waal EE, Buhre WF. Arterial waveform analysis in anesthesia and critical care. Curr Opin Anaesthesiol. 2011;24:651–6.

    Article  PubMed  Google Scholar 

  22. Nichols WW, O'Rourke M. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. London: Oxford University Press; 2005.

    Google Scholar 

  23. Gruenewald M, Meybohm P, Renner J, Broch O, Caliebe A, Weiler N, Steinfath M, Scholz J, Bein B. Effect of norepinephrine dosage and calibration frequency on accuracy of pulse contour-derived cardiac output. Crit Care. 2011;15:R22.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hamzaoui O, Monnet X, Richard C, Osman D, Chemla D, Teboul JL. Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period. Crit Care Med. 2008;36:434–40.

    Article  PubMed  Google Scholar 

  25. Gopal S, Do T, Pooni JS, Martinelli G. Validation of cardiac output studies from the Mostcare compared to a pulmonary artery catheter in septic patients. Minerva Anestesiol. 2014;80:314–23.

    CAS  PubMed  Google Scholar 

  26. Eleftheriadis S, Galatoudis Z, Didilis V, Bougioukas I, Schon J, Heinze H, Berger KU, Heringlake M. Variations in arterial blood pressure are associated with parallel changes in FlowTrac/Vigileo-derived cardiac output measurements: a prospective comparison study. Crit Care. 2009;13:R179.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Magder S. Invasive intravascular hemodynamic monitoring: technical issues. Crit Care Clin. 2007;23:401–14.

    Article  PubMed  Google Scholar 

  28. He HW, Liu DW, Long Y, Wang XT, Zhao ML, Lai XL. The effect of variable arterial transducer level on the accuracy of pulse contour waveform-derived measurements in critically ill patients. J Clin Monit Comput. 2016;30:569–75.

    Article  PubMed  Google Scholar 

  29. Romagnoli S, Ricci Z, Quattrone D, Tofani L, Tujjar O, Villa G, Romano SM, De Gaudio AR. Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study. Crit Care. 2014;18:644.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Penaz J. Criteria for set point estimation in the volume clamp method of blood pressure measurement. Physiol Res. 1992;41:5–10.

    CAS  PubMed  Google Scholar 

  31. Monnet X, Picard F, Lidzborski E, Mesnil M, Duranteau J, Richard C, Teboul JL. The estimation of cardiac output by the Nexfin device is of poor reliability for tracking the effects of a fluid challenge. Crit Care. 2012;16:R212.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fischer MO, Avram R, Carjaliu I, Massetti M, Gerard JL, Hanouz JL, Fellahi JL. Non-invasive continuous arterial pressure and cardiac index monitoring with Nexfin after cardiac surgery. Br J Anaesth. 2012;109:514–21.

    Article  CAS  PubMed  Google Scholar 

  33. Cecconi M, Malbrain ML. Cardiac output obtained by pulse pressure analysis: to calibrate or not to calibrate may not be the only question when used properly. Intensive Care Med. 2013;39:787–9.

    Article  PubMed  Google Scholar 

  34. Monnet X, Marik PE, Teboul JL. Prediction of fluid responsiveness: an update. Ann Intensive Care. 2016;6:111.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 European Society of Intensive Care Medicine

About this chapter

Cite this chapter

Monge García, M.I., Santos, A. (2019). Arterial Pressure Waveform Analysis on Cardiac Output Monitoring. In: Pinsky, M.R., Teboul, JL., Vincent, JL. (eds) Hemodynamic Monitoring. Lessons from the ICU. Springer, Cham. https://doi.org/10.1007/978-3-319-69269-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69269-2_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69268-5

  • Online ISBN: 978-3-319-69269-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics