Skip to main content

More on SAS Programming and Some Applications

  • Chapter
  • First Online:
  • 3869 Accesses

Part of the book series: Springer Texts in Statistics ((STS))

Abstract

Additional details of accessing external data, such as reading data from files, and how SAS data sets are permanently saved in libraries are introduced. User-written formats are illustrated using these for creating categories. A few base SAS procedures such as MEANS and TABULATE are used to demonstrate how to produce structured tables of basic statistics. The UNIVARIATE procedure is used to illustrate a variety of statistical and graphical analysis available in SAS for studying empirical distributions and the FREQ procedure is used for the analysis of one-way frequency tables and contingency tables using goodness-of-fit tests and statistical measures for examining associations among categorical variables. The REPORT procedure that combines features of several other report producing procedures is introduced.

This is a preview of subscription content, log in via an institution.

References

  • Agresti, A. (2013). Categorical data analysis (3rd ed.). Hoboken, NJ: Wiley.

    MATH  Google Scholar 

  • Akaike, H. (1981). Likelihood of a model and information criteria. Journal of Econometrics, 16, 3–14.

    Article  Google Scholar 

  • Armitage, P., & Berry, G. (1994). Statistical methods in medical research (3rd ed.). Malden, MA: Blackwell.

    Google Scholar 

  • Bates, D.M., & Watts, D.G. (1988). Nonlinear regression analysis and its applications. New York, NY: Wiley.

    Book  Google Scholar 

  • Bliss, C. I. (1935). The calculation of the dosage-mortality curve. Annals of Applied Biology, 22(1), 134–167.

    Article  Google Scholar 

  • Bliss, C. I. (1970). Statistics in biology (Vol. 2). New York, NY: McGraw-Hill.

    MATH  Google Scholar 

  • Bowerman, B. L., & O’Connell, R. T. (2004). Business statistics in practice (4th ed.). Chicago, IL: McGraw-Hill/Irwin.

    Google Scholar 

  • Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters. New York, NY: Wiley.

    MATH  Google Scholar 

  • Breslow, N. E. (1984). Extra-Poisson variation in Log-linear models. Applied Statistics, 33(1), 38–44.

    Article  Google Scholar 

  • Chambers, J. M., Cleveland, W. S., Kleiner, B., & Tukey, P. A. (1983). Graphical methods in data analysis. Belmont, CA: Wadsworth.

    MATH  Google Scholar 

  • Chen, W. W., Neipel, M., & Sorger, P. K. (2010). Classic and contemporary approaches to modeling biochemical reactions. Genes & Development, 24(17), 1861–1875.

    Article  Google Scholar 

  • Collett, D. (2003). Modelling binary data. London: Chapman & Hall.

    MATH  Google Scholar 

  • Crowder, M. J. (1978). Beta-binomial Anova for proportions. Applied Statistics, 27(1), 34–37.

    Article  Google Scholar 

  • Deak, N. A., & Johnson, L. A. (2007). Effects of extraction temperature and preservation method on functionality of soy protein. Journal of the American Oil Chemists’ Society, 84, 259–268.

    Article  Google Scholar 

  • Devore, J. L. (1982). Probability and statistics for engineering and the sciences. Monterey, CA: Brooks/Cole.

    MATH  Google Scholar 

  • Draper, N. R., & Smith, H. (1981) Applied regression analysis (2nd ed.). New York, NY: Wiley.

    MATH  Google Scholar 

  • Draper, N. R., & Smith, H. (1998). Applied regression analysis (3rd ed.). New York, NY: Wiley.

    MATH  Google Scholar 

  • Dunn, O. J., & Clark, V. A. (1987). Applied statistics: Analysis of variance and regression analysis (2nd ed.). New York, NY: Wiley.

    MATH  Google Scholar 

  • Efron, B., Hastie, T. J., Johnstone, I. M., & Tibshirani, R. (2004). Least angle regression (with discussion). Annals of Statistics, 32, 407–499.

    Article  MathSciNet  Google Scholar 

  • Endrenyi, L. (1981). Kinetic data analysis. New York: Springer.

    Book  Google Scholar 

  • Graubard, B. I., & Korn, E. L. (1987). Choice of column scores for testing independence in ordered 2xk contingency tables (with discussion). Biometrics, 43, 471–476.

    Article  MathSciNet  Google Scholar 

  • Henderson, C. R., Kempthorne, O., Searle, S. R., & von Krosigk, C. N. (1959). Estimation of environmental and genetic trends from records subject to culling. Biometrics, 15, 192–218.

    Article  Google Scholar 

  • Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983–997.

    Article  Google Scholar 

  • Kirk, R. E. (1982). Experimental design (2nd ed.). Monterey, CA: Brooks/Cole.

    Google Scholar 

  • Koopmans, L. H. (1987). Introduction to contemporary statistical methods (2nd ed.). Boston, MA: Duxbury.

    Google Scholar 

  • Kuehl, R. O. (2000). Design of experiments: Statistical principles of research design and analysis. Pacific Grove, CA: Brooks/Cole.

    MATH  Google Scholar 

  • Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2004). Applied linear regression models (4th ed.). Chicago, IL: McGraw-Hill/Irwin.

    Google Scholar 

  • Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models (5th ed.). Chicago, IL: McGraw-Hill/Irwin.

    Google Scholar 

  • Leskovac, V. (2003). Comprehensive enzyme kinetics. New York: Kluwer Academic/Plenum.

    Google Scholar 

  • Lindsey, J. K. (2001). Nonlinear models in medical sciences. New York, NY: Oxford University Press.

    MATH  Google Scholar 

  • Littell, R. C., Freund, R. J., & Spector, P. C. (1991). SAS system for linear models (3rd ed.). Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Lloyd, C. J. (1999). Statistical analysis of categorical data. New York, NY: Wiley.

    MATH  Google Scholar 

  • Lund, R. E. (1975). Tables for an approximate test for outliers in linear models. Technometrics, 17, 473–476.

    Article  Google Scholar 

  • Madsen, H., & Thyregod, P. (2011). Introduction to general and generalized linear models. Boca Raton, FL: Chapman & Hall/CRC.

    Google Scholar 

  • Margolin, B. H., Kaplan, N., & Zeiger, E. (1981). Statistical analysis of the Ames Salmonella test. Proceedings of the National Academy of Sciences of the United States of America, 78(6), 3779–3783.

    Article  Google Scholar 

  • Mason, R. L., Gunst, R. F., & Hess, J. L. (1989). Statistical design & analysis of experiments. New York, NY: Wiley.

    MATH  Google Scholar 

  • McClave, J. T., Benson, G. P., & Sincich T. L. (2000). Statistics for business and economics (8th ed.). Englewood Cliffs, NJ: Prentice Hall Inc.

    MATH  Google Scholar 

  • McCullagh, P., & Nelder, J. (1989). Generalized linear models (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC.

    Book  Google Scholar 

  • McDonald, G. C., & Schwing, R. C. (1973). Instabilities of regression estimates relating air pollution to mortality. Technometrics, 15, 463–482.

    Article  Google Scholar 

  • Milliken, G. A., & Johnson, D. E. (2001). Analysis of Messy data, volume III: Analysis of covariance. Boca Raton, FL: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Montgomery, D. C. (1991). The design and analysis of experiments (3rd ed.). New York, NY: Wiley.

    MATH  Google Scholar 

  • Montgomery, D. C. (2013). The design and analysis of experiments (8th ed.). New York, NY: Wiley.

    Google Scholar 

  • Moore, L. M., & Beckman, R. J. (1988). Approximate one-sided tolerance bounds on the number of failures using Poisson regression. Technometrics, 30, 283–290.

    Article  Google Scholar 

  • Morel, J. G., & Neerchal, N. K. (2012). Overdispersion models in SAS. Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Morrison, D. F. (1983). Applied linear statistical methods. Englewood Cliffs, NJ: Prentice Hall Inc.

    MATH  Google Scholar 

  • Myers, R. H. (1990). Classical and modern regression with applications (2nd ed.). Boston, MA: PWS-KENT Publishing.

    Google Scholar 

  • Nelder, J., & Wedderburn, R. (1972). Generalized linear models. Journal of the Royal Statistical Society, Series A, 135, 370–384.

    Article  Google Scholar 

  • Okada, Y., Yabe, T., & Oda, S. (2010). Temperature-dependent sex determination in Japanese pond turtles, Mauremys japonica (Reptilia: Geoemydidea). Current Herpetology, 29(1), 1–10.

    Article  Google Scholar 

  • Ostle, B. (1963). Statistics in research (2nd ed.). Ames, IA: Iowa State University Press.

    MATH  Google Scholar 

  • Ott, R. L., Larson, R. F., & Mendenhall, W. (1987). Statistics: A tool for the social sciences (4th ed.). Boston, MA: Duxbury.

    Google Scholar 

  • Ott, R. L., & Longnecker, M. (2001). An introduction to statistical methods and data analysis (5th ed.). Pacific Grove, CA: Duxbury.

    Google Scholar 

  • Price, C. J., Kimmel, C. A., George, J. D., & Marr, M.C. (1987). The developmental toxicity of diethylene glycol dimethyl ether in mice. Fundamental and Applied Toxicology, 8, 115–126.

    Article  Google Scholar 

  • Rice, J. A. (1988). Mathematical statistics and data analysis. Pacific Grove, CA: Wadsworth & Brooks/Cole.

    MATH  Google Scholar 

  • Sahai, H., & Ageel M. I. (2000). The analysis of variance. Boston, MA: Birkhäuser.

    Book  Google Scholar 

  • Schlotzhauer, S. D., & Littell, R. C. (1997). SAS system for elementary statistical analysis (2nd ed.). Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Searle, S. R. (1971). Linear models. New York, NY: Wiley.

    MATH  Google Scholar 

  • Searle, S. R., Casella, G., & McCulloch, C. E. (1992). Variance components. New York, NY: Wiley.

    Book  Google Scholar 

  • Simonoff, J. S. (2003). Analyzing categorical data. New York: Springer-Verlag.

    Book  Google Scholar 

  • Simpson, J., Olsen, A., & Eden, J. (1975). A Bayesian analysis of a multiplicative treatment effect in weather modification. Technometrics, 17, 161–166.

    Article  Google Scholar 

  • Snedecor, G. W., & Cochran, W. G. (1989). Statistical methods (8th ed.). Ames, IA: Iowa State University Press.

    MATH  Google Scholar 

  • Sokal, R. R., & Rohlf, J. F. (1995). Biometry: The principles and practice of statistics in biological research (3rd ed.). New York, NY: Freeman.

    MATH  Google Scholar 

  • Stamey, T., Kabalin, J., McNeal, J., Johnstone, I., Freiha, F., Redwine, E., & Yang, N. (1989). Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate II radical prostatectomy treated patients. Journal of Urology, 16, 1076–1083.

    Article  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58, 267–288.

    MathSciNet  MATH  Google Scholar 

  • Tukey, J. W. (1949). One degree of freedom for nonadditivity. Biometrics, 5, 232–242.

    Article  Google Scholar 

  • Ver Hoef, J., & Boveng, P. (2007). Quasi-Poisson vs. negative binomial regression: How should we model overdispersed count data? Ecology, 11, 2766–2772.

    Article  Google Scholar 

  • Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61, 439–447.

    MathSciNet  MATH  Google Scholar 

  • Weisberg, S. (1985). Applied linear regression analysis (2nd ed.). New York, NY: Wiley.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marasinghe, M.G., Koehler, K.J. (2018). More on SAS Programming and Some Applications. In: Statistical Data Analysis Using SAS. Springer Texts in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-69239-5_2

Download citation

Publish with us

Policies and ethics