Skip to main content

Normal Numbers and Computer Science

  • Chapter
  • First Online:
Sequences, Groups, and Number Theory

Part of the book series: Trends in Mathematics ((TM))

Abstract

Émile Borel defined normality more than 100 years ago to formalize the most basic form of randomness for real numbers. A number is normal to a given integer base if its expansion in that base is such that all blocks of digits of the same length occur in it with the same limiting frequency. This chapter is an introduction to the theory of normal numbers. We present five different equivalent formulations of normality, and we prove their equivalence in full detail. Four of the definitions are combinatorial, and one is, in terms of finite automata, analogous to the characterization of Martin-Löf randomness in terms of Turing machines. All known examples of normal numbers have been obtained by constructions. We show three constructions of numbers that are normal to a given base and two constructions of numbers that are normal to all integer bases. We also prove Agafonov’s theorem that establishes that a number is normal to a given base exactly when its expansion in that base is such that every subsequence selected by a finite automaton is also normal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agafonov, V.N.: Normal sequences and finite automata. Sov. Math. Dokl. 9, 324–325 (1968)

    Google Scholar 

  2. Aistleitner, C., Becher, V., Scheerer, A.M., Slaman, T.: On the construction of absolutely normal numbers. Acta Arith. (to appear), arXiv:1702.04072

    Google Scholar 

  3. Alvarez, N., Becher, V.: M. Levin’s construction of absolutely normal numbers with very low discrepancy. Math. Comput. (to appear)

    Google Scholar 

  4. Bailey, D.H., Borwein, J.M.: Nonnormality of stoneham constants. Ramanujan J. 29(1), 409–422 (2012)

    Google Scholar 

  5. Becher, V., Bugeaud, Y., Slaman, T.: On simply normal numbers to different bases. Math. Ann. 364(1), 125–150 (2016)

    Google Scholar 

  6. Becher, V., Carton, O., Heiber, P.A.: Finite-state independence. Theory Comput. Syst. (to appear)

    Google Scholar 

  7. Becher, V., Figueira, S.: An example of a computable absolutely normal number. Theor. Comput. Sci. 270, 947–958 (2002)

    Google Scholar 

  8. Becher, V., Figueira, S., Picchi, R.: Turing’s unpublished algorithm for normal numbers. Theor. Comput. Sci. 377, 126–138 (2007)

    Google Scholar 

  9. Becher, V., Heiber, P., Slaman, T.: A polynomial-time algorithm for computing absolutely normal numbers. Inf. Comput. 232, 1–9 (2013)

    Google Scholar 

  10. Becher, V., Heiber, P., Slaman, T.: A computable absolutely normal Liouville number. Math. Comput. 84(296), 2939–2952 (2015)

    Google Scholar 

  11. Becher, V., Heiber, P.A.: On extending de Bruijn sequences. Inf. Process. Lett. 111(18), 930–932 (2011)

    Google Scholar 

  12. Becher, V., Heiber, P.A.: Normal numbers and finite automata. Theor. Comput. Sci. 477, 109–116 (2013)

    Google Scholar 

  13. Becher, V., Heiber, P.A., Carton, O.: Normality and automata. J. Comput. Syst. Sci. 81, 1592–1613 (2015)

    Google Scholar 

  14. Becher, V., Slaman, T.A.: On the normality of numbers to different bases. J. Lond. Math. Soc. 90(2), 472–494 (2014)

    Google Scholar 

  15. Berstel, J., Perrin, D.: The origins of combinatorics on words. Eur. J. Comb. 28, 996–1022 (2007)

    Google Scholar 

  16. Bluhm, C.: Liouville numbers, Rajchman measures, and small Cantor sets. Proc. Am. Math. Soc. 128(9), 2637–2640 (2000)

    Google Scholar 

  17. Borel, É.: Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti Circ. Mat. Palermo 27, 247–271 (1909)

    Google Scholar 

  18. Borel, É.: Sur les chiffres décimaux \(\sqrt {2}\) et divers problémes de probabilités en chaîne. C. R. Acad. Sci. Paris 230, 591–593 (1950)

    Google Scholar 

  19. Borwein, J., Bailey, D.: Mathematics by Experiment, Plausible Reasoning in the 21st Century, 2nd edn. A. K. Peters, Ltd, Wellesley, MA (2008)

    Google Scholar 

  20. Bugeaud, Y.: Nombres de Liouville et nombres normaux. C. R. Acad. Sci. Paris 335(2), 117–120 (2002)

    Article  MathSciNet  Google Scholar 

  21. Bugeaud, Y.: Distribution modulo one and Diophantine approximation. Cambridge Tracts in Mathematics, vol. 193. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  22. Carton, O., Heiber, P.A.: Normality and two-way automata. Inf. Comput.241, 264–276 (2015)

    Article  MathSciNet  Google Scholar 

  23. Cassels, J.W.S.: On a problem of Steinhaus about normal numbers. Colloq. Math. 7, 95–101 (1959)

    Article  MathSciNet  Google Scholar 

  24. Champernowne, D.G.: The construction of decimals normal in the scale of ten. J. Lond. Math. Soc. s1–8, 254–260 (1933)

    Google Scholar 

  25. Copeland, A.H., Erdős, P.: Note on normal numbers. Bull. Am. Math. Soc. 52, 857–860 (1946)

    Google Scholar 

  26. Dai, J., Lathrop, J., Lutz, J., Mayordomo, E.: Finite-state dimension. Theor. Comput. Sci. 310, 1–33 (2004)

    Article  MathSciNet  Google Scholar 

  27. Davenport, H., Erdős, P.: Note on normal decimals. Can. J. Math. 4, 58–63 (1952)

    Google Scholar 

  28. de Bruijn, N.G.: A combinatorial problem. Proc. Konin. Neder. Akad. Wet. 49, 758–764 (1946)

    MATH  Google Scholar 

  29. Downey, R.G., Hirschfeldt, D.: Algorithmic randomness and complexity. Theory and Applications of Computability, vol. xxvi, 855 p. Springer, New York, NY (2010)

    Google Scholar 

  30. Drmota, M., Tichy, R.F.: Sequences, Discrepancies, and Applications. Lecture Notes in Mathematics, vol. 1651. Springer, Berlin (1997)

    Google Scholar 

  31. Figueira, S., Nies, A.: Feasible analysis, randomness, and base invariance. Theory Comput. Syst. 56, 439–464 (2015)

    Article  MathSciNet  Google Scholar 

  32. Fukuyama, K.: The law of the iterated logarithm for discrepancies of {θn x}. Acta Math. Hung. 118(1), 155–170 (2008)

    Article  MathSciNet  Google Scholar 

  33. Gál, S., Gál, L.: The discrepancy of the sequence {(2n x)}. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings. Seres A 67 = Indagationes Mathematicae 26, 129–143 (1964)

    Google Scholar 

  34. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Oxford University Press, Oxford (1985)

    MATH  Google Scholar 

  35. Kaufman, R.: On the theorem of Jarník and Besicovitch. Acta Arith. 39(3), 265–267 (1981)

    Article  MathSciNet  Google Scholar 

  36. Khintchine, A.: Einige sätze über kettenbrüche, mit anwendungen auf die theorie der diophantischen approximationen. Math. Ann. 92(1), 115–125 (1924)

    Article  MathSciNet  Google Scholar 

  37. Korobov, A.N.: Continued fractions of certain normal numbers. Mat. Z. 47(2), 28–33 (1990, in Russian). English translation in Math. Notes Acad. Sci. USSR 47, 128–132 (1990)

    Google Scholar 

  38. Kuipers, L., Niederreiter, H.: Uniform distribution of sequences. Dover, Mineola (2006)

    MATH  Google Scholar 

  39. Lebesgue, H.: Sur certains démonstrations d’existence. Bull. Soc. Math. France 45, 127–132 (1917)

    MATH  Google Scholar 

  40. Levin, M.: On absolutely normal numbers. Vestnik Moscov. Univ. ser. I, Mat-Meh 1, 31–37, 87 (1979). English translation in Moscow Univ. Math. Bull. 34(1), 32–39 (1979)

    Google Scholar 

  41. Levin, M.: On the discrepancy estimate of normal numbers. Acta Arith. Warzawa 88, 99–111 (1999)

    Article  MathSciNet  Google Scholar 

  42. Lutz, J., Mayordomo, E.: Computing absolutely normal numbers in nearly linear time (2016). ArXiv:1611.05911

    Google Scholar 

  43. Madritsch, M., Scheerer, A.M., Tichy, R.: Computable absolutely Pisot normal numbers. Acta Aritmetica (2017, to appear). arXiv:1610.06388

    Google Scholar 

  44. Nakai, Y., Shiokawa, I.: A class of normal numbers. Jpn. J. Math. (N.S.) 16(1), 17–29 (1990)

    Google Scholar 

  45. Philipp, W.: Limit theorems for lacunary series and uniform distribution mod 1. Acta Arith. 26(3), 241–251 (1975)

    Article  MathSciNet  Google Scholar 

  46. Piatetski-Shapiro, I.I.: On the distribution of the fractional parts of the exponential function. Moskov. Gos. Ped. Inst. Uč. Zap. 108, 317–322 (1957)

    MathSciNet  Google Scholar 

  47. Sainte-Marie, C.F.: Question 48. L’intermédiaire des mathématiciens 1, 107–110 (1894)

    Google Scholar 

  48. Scheerer, A.M.: Computable absolutely normal numbers and discrepancies. Math. Comput. (2017, to appear). ArXiv:1511.03582

    Google Scholar 

  49. Schmidt, W.: Über die Normalität von Zahlen zu verschiedenen Basen. Acta Arith. 7, 299–309 (1961/1962)

    Article  MathSciNet  Google Scholar 

  50. Schmidt, W.: Irregularities of distribution. VII. Acta Arith. 21, 4550 (1972)

    Google Scholar 

  51. Schnorr, C.P., Stimm, H.: Endliche automaten und zufallsfolgen. Acta Inform. 1, 345–359 (1972)

    Article  MathSciNet  Google Scholar 

  52. Sierpiński, W.: Démonstration élémentaire du théorème de M. Borel sur les nombres absolument normaux et détermination effective d’un tel nombre. Bull. Soc. Math. France 45, 132–144 (1917)

    MATH  Google Scholar 

  53. Stoneham, R.: A general arithmetic construction of transcendental non-Liouville normal numbers from rational fractions. Acta Arith. XVI, 239–253 (1970). Errata to the paper in Acta Arith. XVII, 1971

    Google Scholar 

  54. Turing, A.: A note on normal numbers. In: Collected Works of Alan M. Turing, Pure Mathematics, pp. 117–119. North Holland, Amsterdam (1992). Notes of editor, 263–265

    Google Scholar 

  55. Ugalde, E.: An alternative construction of normal numbers. J. Théorie Nombres Bordeaux 12, 165–177 (2000)

    Article  MathSciNet  Google Scholar 

  56. Wall, D.D.: Normal numbers. Ph.D. thesis, University of California, Berkeley, CA (1949)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica Becher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Becher, V., Carton, O. (2018). Normal Numbers and Computer Science. In: Berthé, V., Rigo, M. (eds) Sequences, Groups, and Number Theory. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-69152-7_7

Download citation

Publish with us

Policies and ethics