Skip to main content

Process Intensification of Biofuel Production from Microalgae

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

A tremendous increase in population has also led to a significant increase in the demand for energy leading to search for alternatives which can match up with the current requirement quantitatively and also qualitatively as a green energy carrier. Fuels derived from algal biomass can be one of the potential alternatives, as microalgae possess higher nutrients, required lipids and CO2 uptake capacity and can be grown quickly on nonarable land throughout the year without their interference in food supply chain. The quantum of biodiesel produced from microalgae can be about 10–20 times higher than that obtained from terrestrial plants. Microalgae also help in reducing global warming by capturing CO2. The cost of production of biofuels from microalgae is the current setback which can be overcome by taking into consideration a biorefinery approach which can give multiple products with same expenditure as well as using some process intensification approaches. Process intensification plays a major role in reducing the cost and also can lead to use of less quantum of materials and lower operating temperatures. The present chapter will focus on analyzing the process intensification aspects applied to biofuels production from microalgae. The initial sections will cover the details of the types of microalgae and their harvesting techniques, followed by the discussion on the different approaches used to extract bio-oil from microalgae, and then the production of different biofuels. Intensification can be applied to both the extraction and the actual reaction for production of biofuels. The chapter will also focus on the mechanism of intensification using different approaches such as ultrasound, microwave, ultraviolet, and oscillatory baffled reactors. An overview of the literature will be presented so as to give guidelines about the possible reactor designs and operating parameters also highlighting the process intensification benefits that can be obtained. Overall, the work is expected to bring out critical analysis of the different approaches and the expected benefits due to the use of process intensification also enabling understanding of the reactor designs and operating parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott, M. S. R., Brain, C. M., Harvey, A. P., Morrison, M. I., & Valente, G. (2015). Liquid culture of microalgae in a photobioreactor (PBR) based on oscillatory baffled reactor (OBR) technology—A feasibility study. Chemical Engineering Science, 138, 315–323.

    Article  Google Scholar 

  • Adam, F., Abert-Vian, M., Peltier, G., & Chemat, F. (2012). “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process. Bioresource Technology, 114, 457–465.

    Article  Google Scholar 

  • Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Thomaidis, N. S., & Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. Journal of Hazardous Materials, 323, 274–298.

    Article  Google Scholar 

  • Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28, 64–70.

    Article  Google Scholar 

  • Bilad, M. R., Discart, V., Vandamme, D., Foubert, I., Muylaert, K., & Vankelecom, I. F. J. (2013). Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: Filtration performance and energy consumption. Bioresource Technology, 138, 329–338.

    Article  Google Scholar 

  • Cao, P., Dubé, M. A., & Tremblay, A. Y. (2008). Methanol recycling in the production of biodiesel in a membrane reactor. Fuel, 87, 825–833.

    Article  Google Scholar 

  • Cao, P., Tremblay, A. Y., Dubé, M. A., & Morse, K. (2007). Effect of membrane pore size on the performance of a membrane reactor for biodiesel production. Industrial and Engineering Chemistry Research, 46, 52–58.

    Article  Google Scholar 

  • Carrero, A., Vicente, G., Rodríguez, R., Linares, M., & Del Peso, G. L. (2011). Hierarchical zeolites as catalysts for biodiesel production from Nannochloropsis microalga oil. Catalysis Today, 167, 148–153.

    Article  Google Scholar 

  • Carvalho, A. P., Meireles, L. A., & Malcata, F. X. (2006). Microalgal reactors: A review of enclosed system designs and performances. Biotechnology Progress, 22, 1490–1506. https://doi.org/10.1021/bp060065r.

    Article  Google Scholar 

  • Chen, P. H., & Oswald, W. J. (1998). Thermochemical treatment for algal fermentation. Environment International, 24, 889–897.

    Article  Google Scholar 

  • Choudhary, P., Prajapati, S. K., Kumar, P., Malik, A., & Pant, K. K. (2017). Development and performance evaluation of an algal biofilm reactor for treatment of multiple wastewaters and characterization of biomass for diverse applications. Bioresource Technology, 224, 276–284.

    Article  Google Scholar 

  • Dube, M. A., Tremblay, A. Y., & Liu, J. (2007). Biodiesel production using a membrane reactor. Bioresource Technology, 98, 639–647.

    Article  Google Scholar 

  • Ehimen, E. A., Holm-Nielsen, J. B., Poulsen, M., & Boelsmand, J. E. (2013). Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae. Renewable Energy, 50, 476–480.

    Article  Google Scholar 

  • Ehimen, E. A., Sun, Z. F., & Carrington, C. G. (2010). Variables affecting the in situ transesterification of microalgae lipids. Fuel, 89, 677–684.

    Article  Google Scholar 

  • Ehimen, E. A., Sun, Z., & Carrington, G. C. (2012). Use of ultrasound and co-solvents to improve the in-situ transesterification of microalgae biomass. Procedia Environmental Sciences, 15, 47–55. https://doi.org/10.1016/j.proenv.2012.05.009.

    Article  Google Scholar 

  • El-Dalatony, M. M., Kurade, M. B., Abou-Shanab, R. A. I., Kim, H., Salama, E. S., & Jeon, B. H. (2016). Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae. Bioresource Technology, 219, 98–105.

    Article  Google Scholar 

  • Estrada-Villagrana, A. D., Quiroz-Sosa, G. B., Jiménez-Alarcón, M. L., Alemán-Vázquez, L. O., & Cano-Domínguez, J. L. (2006). Comparison between a conventional process and reactive distillation for naphtha hydrodesulfurization. Chemical Engineering and Processing: Process Intensification, 45, 1036–1040.

    Article  Google Scholar 

  • Ferreira, A. F., Dias, A. P. S., Silva, C. M., & Costa, M. (2016). Effect of low frequency ultrasound on microalgae solvent extraction: Analysis of products, energy consumption and emissions. Algal Research, 14, 9–16.

    Article  Google Scholar 

  • Fu, C. C., Hung, T. C., Chen, J. Y., Su, C. H., & Wu, W. T. (2010). Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresource Technology, 101, 8750–8754.

    Article  Google Scholar 

  • Gao, S., Yang, J., Tian, J., Ma, F., Tu, G., & Du, M. (2010). Electro-coagulation-flotation process for algae removal. Journal of Hazardous Materials, 177, 336–343.

    Article  Google Scholar 

  • Gendy, T. S., & El-Temtamy, S. A. (2013). Commercialization potential aspects of microalgae for biofuel production: An overview. Egyptian Journal of Petroleum, 22, 43–51.

    Article  Google Scholar 

  • Ghayal, D., Pandit, A. B., & Rathod, V. K. (2013). Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil. Ultrasonics Sonochemistry, 20, 322–328.

    Article  Google Scholar 

  • Gogate, P. R., & Pandit, A. B. (2004). Sonochemical reactors: Scale up aspects. Ultrasonics Sonochemistry, 11, 105–117.

    Article  Google Scholar 

  • Gole, V. L., & Gogate, P. R. (2012). Intensification of synthesis of biodiesel from nonedible oils using sonochemical reactors. Industrial and Engineering Chemistry Research, 51(37), 11866–11874.

    Article  Google Scholar 

  • González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012a). Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass and Bioenergy, 40, 105–111.

    Article  Google Scholar 

  • González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012b). Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresource Technology, 110, 610–616.

    Article  Google Scholar 

  • Guo, H., Daroch, M., Liu, L., Qiu, G., Geng, S., & Wang, G. (2013). Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta. Bioresource Technology, 127, 422–428.

    Article  Google Scholar 

  • Gupta, A., & Verma, J. P. (2015). Sustainable bio-ethanol production from agro-residues: A review. Renewable and Sustainable Energy Reviews, 41, 550–567.

    Article  Google Scholar 

  • Han, F., Pei, H., Hu, W., Jiang, L., Cheng, J., & Zhang, L. (2016). Beneficial changes in biomass and lipid of microalgae Anabaena variabilis facing the ultrasonic stress environment. Bioresource Technology, 209, 16–22.

    Article  Google Scholar 

  • Harun, R., Danquah, M. K., & Forde, G. M. (2010). Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of Chemical Technology and Biotechnology, 85, 199–203.

    Google Scholar 

  • Harvey, A. P., Mackley, M. R., & Seliger, T. (2003). Process intensification of biodiesel production using a continuous oscillatory flow reactor. Journal of Chemical Technology and Biotechnology, 78, 338–341.

    Article  Google Scholar 

  • He, B. B., Singh, A. P., & Thompson, J. C. (2006). A novel continuous-flow reactor using reactive distillation for biodiesel production. Transactions of the ASABE, 49, 107–112.

    Article  Google Scholar 

  • Ho, S. H., Huang, S. W., Chen, C. Y., Hasunuma, T., Kondo, A., & Chang, J. S. (2013). Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology, 135, 191–198.

    Article  Google Scholar 

  • Jankowska, E., Sahu, A. K., & Oleskowicz-Popiel, P. (2017). Biogas from microalgae: Review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renewable and Sustainable Energy Reviews, 75, 692–709.

    Article  Google Scholar 

  • Jeevan Kumar, S. P., Vijay Kumar, G., Dash, A., Scholz, P., & Banerjee, R. (2017). Sustainable green solvents and techniques for lipid extraction from microalgae: A review. Algal Research, 21, 138–147.

    Article  Google Scholar 

  • Joshi, S., Gogate, P. R., Moreira, P. F., & Giudici, R. (2017). Intensification of biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer. Ultrasonics Sonochemistry, 39, 645–653.

    Article  Google Scholar 

  • Kashid, M. N., & Kiwi-Minsker, L. (2009). Microstructured reactors for multiphase reactions: State of the art. Industrial and Engineering Chemistry Research, 48, 6465–6485.

    Article  Google Scholar 

  • Keymer, P., Ruffell, I., Pratt, S., & Lant, P. (2013). High pressure thermal hydrolysis as pre-treatment to increase the methane yield during anaerobic digestion of microalgae. Bioresource Technology, 131, 128–133.

    Article  Google Scholar 

  • Khan, M. I., Lee, M. G., Shin, J. H., & Kim, J. D. (2017). Pretreatment optimization of the biomass of Microcystis aeruginosa for efficient bioethanol production. AMB Express, 7, 19.

    Article  Google Scholar 

  • Kim, B., Im, H., & Lee, J. W. (2015). In situ transesterification of highly wet microalgae using hydrochloric acid. Bioresource Technology, 185, 421–425.

    Article  Google Scholar 

  • Kim, J., Yoo, G., Lee, H., Lim, J., Kim, K., Kim, C. W., et al. (2013). Methods of downstream processing for the production of biodiesel from microalgae. Biotechnology Advances, 31, 862–876.

    Article  Google Scholar 

  • Kraai, G. N., Schuur, B., van Zwol, F., van de Bovenkamp, H. H., Heeres, H. J. (2009). Novel highly integrated biodiesel production technology in a centrifugal contactor separator device. Chemical Engineering Journal, 154, 384–389. https://doi.org/10.1016/j.cej.2009.04.047.

    Article  Google Scholar 

  • Lee, Y., & Li, P. (2016). Using resonant ultrasound field-incorporated dynamic photobioreactor system to enhance medium replacement process for concentrated microalgae cultivation in continuous mode. Chemical Engineering Research and Design, 118, 112–120.

    Article  Google Scholar 

  • Lee, K. T., Lim, S., Pang, Y. L., Ong, H. C., & Chong, W. T. (2014). Integration of reactive extraction with supercritical fluids for process intensification of biodiesel production: Prospects and recent advances. Progress in Energy and Combustion Science, 45, 54–78.

    Article  Google Scholar 

  • Lee, J. Y., Yoo, C., Jun, S. Y., Ahn, C. Y., & Oh, H. M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101, S75–S77.

    Article  Google Scholar 

  • Li, Y., Chen, Y. F., Chen, P., Min, M., Zhou, W., Martinez, B., et al. (2011a). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102, 5138–5144.

    Article  Google Scholar 

  • Li, Y., Lian, S., Tong, D., Song, R., Yang, W., Fan, Y., et al. (2011b). One-step production of biodiesel from Nannochloropsis sp. on solid base Mg–Zr catalyst. Applied Energy, 88, 3313–3317.

    Article  Google Scholar 

  • Lu, W., Wang, Z., Wang, X., & Yuan, Z. (2015). Cultivation of Chlorella sp. using raw diary wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresource Technology, 192, 382–388.

    Article  Google Scholar 

  • Mazubert, A., Poux, M., & Aubin, J. (2013). Intensified processes for FAME production from waste cooking oil: A technological review. Chemical Engineering Journal, 233, 201–223.

    Article  Google Scholar 

  • Miao, X., & Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97, 841–846.

    Article  Google Scholar 

  • Misra, R., Guldhe, A., Singh, P., Rawat, I., Stenstrom, T. A., & Bux, F. (2015). Evaluation of operating conditions for sustainable harvesting of microalgal biomass applying electrochemical method using non sacrificial electrodes. Bioresource Technology, 176, 1–7.

    Article  Google Scholar 

  • Olguín, E. J. (2012). Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnology Advances, 30, 1031–1046.

    Article  Google Scholar 

  • Park, K. Y., Kweon, J., Chantrasakdakul, P., Lee, K., & Cha, H. Y. (2013). Anaerobic digestion of microalgal biomass with ultrasonic disintegration. International Biodeterioration & Biodegradation, 85, 598–602.

    Article  Google Scholar 

  • Passos, F., Hernández-Mariné, M., García, J., Ferrer, I. (2014). Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Research, 49.

    Article  Google Scholar 

  • Passos, F., Sole, M., Garcia, J., & Ferrer, I. (2013). Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment. Applied Energy, 108, 168–175.

    Article  Google Scholar 

  • Patel, A., Gami, B., Patel, P., Patel, B. (2016). Microalgae: Antiquity to era of integrated technology. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2016.12.081.

  • Patil, P. D., Gude, V. G., Mannarswamy, A., Cooke, P., Munson-McGee, S., Nirmalakhandan, N., et al. (2011a). Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Bioresource Technology, 102, 1399–1405.

    Article  Google Scholar 

  • Patil, P. D., Gude, V. G., Mannarswamy, A., Deng, S., Cooke, P., Munson-McGee, S., et al. (2011b). Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresource Technology, 102, 118–122.

    Article  Google Scholar 

  • Pfaffinger, C. E., Schöne, D., Trunz, S., Löwe, H., & Weuster-Botz, D. (2016). Model-based optimization of microalgae areal productivity in flat-plate gas-lift photobioreactors. Algal Research, 20, 153–163.

    Article  Google Scholar 

  • Prabakaran, P., & Ravindran, A. D. (2011). A comparative study on effective cell disruption methods for lipid extraction from microalgae. Letters in Applied Microbiology, 53, 150–154.

    Article  Google Scholar 

  • Priyadarshani, I., & Rath, B. (2012). Commercial and industrial applications of micro algae—A review. Journal of Algal Biomass Utilization, 3, 89–100.

    Google Scholar 

  • Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., et al. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102, 100–112.

    Article  Google Scholar 

  • Samson, R., & Leduy, A. (1983). Influence of mechanical and thermochemical pretreatments on anaerobic digestion of Spirulina maxima algal biomass. Biotechnology Letters, 5, 671–676.

    Article  Google Scholar 

  • Sangaletti-Gerhard, N., Cea, M., Risco, V., & Navia, R. (2015). In situ biodiesel production from greasy sewage sludge using acid and enzymatic catalysts. Bioresource Technology, 179, 63–70.

    Article  Google Scholar 

  • Santos, N. O., Oliveira, S. M., Alves, L. C., & Cammarota, M. C. (2014). Methane production from marine microalgae Isochrysis galbana. Bioresource Technology, 157, 60–67.

    Article  Google Scholar 

  • Schuchardt, U., Sercheli, R., & Matheus, R. (1998). Transesterification of vegetable oils: A review general aspects of transesterification of vegetable oils acid-catalyzed processes base-catalyzed processes. Journal of the Brazilian Chemical Society, 9, 199–210.

    Article  Google Scholar 

  • Schwede, S., Kowalczyk, A., Gerber, M., Span, R. (2011). Influence of different cell disruption techniques on mono digestion of algal biomass. In Bioenergy Technology—World Renewable Energy Congress (pp. 41–47). https://doi.org/10.3384/ecp1105741.

  • Sebestyen, P., Blanken, W., Bacsa, I., Toth, G., Martin, A., Bhaiji, T., et al. (2016). Upscale of a laboratory rotating disk biofilm reactor and evaluation of its performance over a half-year operation period in outdoor conditions. Algal Research, 18, 266–272.

    Article  Google Scholar 

  • Shokrkar, H., Ebrahimi, S., & Zamani, M. (2017). Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel, 200, 380–386.

    Article  Google Scholar 

  • Silva, C. E. F., & Bertucco, A. (2016). Bioethanol from microalgae and cyanobacteria: A review and technological outlook. Process Biochemistry, 51, 1833–1842.

    Article  Google Scholar 

  • Solovchenko, A., Pogosyan, S., Chivkunova, O., Selyakh, I., Semenova, L., Voronova, E., et al. (2014). Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence. Algal Research, 6, 234–241.

    Article  Google Scholar 

  • Stavarache, C., Vinatoru, M., Nishimura, R., & Maeda, Y. (2005). Fatty acids methyl esters from vegetable oil by means of ultrasonic energy. Ultrasonics Sonochemistry, 12, 367–372.

    Article  Google Scholar 

  • Suali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16, 4316–4342.

    Article  Google Scholar 

  • Subhedar, P. B., Botelho, C., Ribeiro, A., Castro, R., Pereira, M. A., Gogate, P. R., et al. (2015). Ultrasound intensification suppresses the need of methanol excess during the biodiesel production with lipozyme TL-IM. Ultrasonics Sonochemistry, 27, 530–535.

    Article  Google Scholar 

  • Suresh Kumar, K., Dahms, H. U., Won, E. J., Lee, J. S., & Shin, K. H. (2015). Microalgae—A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329–352.

    Article  Google Scholar 

  • Syazwani, O., Rashid, U., & Taufiq Yap, Y. H. (2015). Low-cost solid catalyst derived from waste Cyrtopleura costata (Angel Wing Shell) for biodiesel production using microalgae oil. Energy Conversion and Management, 101, 749–756.

    Article  Google Scholar 

  • Takagi, M., Karseno, Yoshida, T. (2006). Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering, 101, 223–226.

    Article  Google Scholar 

  • Terigar, B. G., Balasubramanian, S., Lima, M., & Boldor, D. (2010). Transesterification of soybean and rice bran oil with ethanol in a continuous-flow microwave-assisted system: Yields, quality, and reaction kinetics. Energy & Fuels, 24, 6609–6615.

    Article  Google Scholar 

  • Umdu, E. S., Tuncer, M., & Seker, E. (2009). Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresource Technology, 100, 2828–2831.

    Article  Google Scholar 

  • Vergini, S., Aravantinou, A. F., & Manariotis, I. D. (2016). Harvesting of freshwater and marine microalgae by common flocculants and magnetic microparticles. Journal of Applied Phycology, 28, 1041–1049.

    Article  Google Scholar 

  • Wahlen, B. D., Willis, R. M., & Seefeldt, L. C. (2011). Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresource Technology, 102, 2724–2730.

    Article  Google Scholar 

  • Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., et al. (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied Biochemistry and Biotechnology, 162, 1174–1186.

    Article  Google Scholar 

  • Wen, Z., Yu, X., Tu, S. T., Yan, J., & Dahlquist, E. (2009). Intensification of biodiesel synthesis using zigzag micro-channel reactors. Bioresource Technology, 100, 3054–3060.

    Article  Google Scholar 

  • Xin, L., Hong-ying, H., Ke, G., & Ying-xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101, 5494–5500.

    Article  Google Scholar 

  • Zhang, Y., Li, Y., Zhang, X., & Tan, T. (2015). Biodiesel production by direct transesterification of microalgal biomass with co-solvent. Bioresource Technology, 196, 712–715.

    Article  Google Scholar 

  • Zhang, X., Ma, Q., Cheng, B., Wang, J., Li, J., & Nie, F. (2012). Research on KOH/La-Ba-Al2O3 catalysts for biodiesel production via transesterification from microalgae oil. Journal of Natural Gas Chemistry, 21, 774–779.

    Article  Google Scholar 

  • Zheng, Y., Roberts, M., Kelly, J., Zhang, N., & Walker, T. (2015). Harvesting microalgae using the temperature-activated phase transition of thermoresponsive polymers. Algal Research, 11, 90–94.

    Article  Google Scholar 

  • Zheng, M., Skelton, R. L., & Mackley, M. R. (2007). Biodiesel reaction screening using oscillatory flow meso reactors. Process Safety and Environment Protection, 85, 365–371.

    Article  Google Scholar 

  • Zheng, H., Yin, J., Gao, Z., Huang, H., Ji, X., & Dou, C. (2011). Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: A comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Applied Biochemistry and Biotechnology, 164, 1215–1224.

    Article  Google Scholar 

  • Zhou, N., Zhang, Y., Wu, X., Gong, X., & Wang, Q. (2011). Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresource Technology, 102, 10158–10161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag Gogate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, S., Gogate, P. (2018). Process Intensification of Biofuel Production from Microalgae. In: Jacob-Lopes, E., Queiroz Zepka, L., Queiroz, M. (eds) Energy from Microalgae . Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-69093-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69093-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69092-6

  • Online ISBN: 978-3-319-69093-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics