Skip to main content

The Tree of Life

  • Chapter
  • First Online:
Book cover Molecular Mechanisms of Microbial Evolution

Abstract

The tree of life, representing the evolution and the relationships between all life-forms, has challenged scientists as soon as Darwin’s work became accepted. A fuel for imagination for a long time, it became more concrete after the molecular biology revolution and the application of mathematical tools to quantify sequence evolution. Despite tremendous advances fueled by the continuous progress in DNA sequencing, from PCR to metagenomics, and in algorithms for phylogenetic reconstruction, many fundamental questions remain still open in the tree of life topology. The biggest of them all would currently be the relationship between Archaea and Eukarya: while some authors argue that they are sister groups (the Woese tree), others state that the latter emerged from the former (the eocyte tree). The tree of life and its subsequent questions are definitely complex objects to comprehend. Evolution states that in order to fully understand life, one has to first know its history, and this mantra should apply here as well. We thus decided to focus in this chapter on the recent history of the tree of life, from its entry into phylogenetics in the 1970s to the recent identification of Asgard archaea and the controversies they have brought. We also briefly discuss the position of the viruses in the tree of life and how their analysis is helpful to understand their host evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S (2017) The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J 11(11):2407–2425

    Article  PubMed  PubMed Central  Google Scholar 

  • Albers SV, Forterre P, Prangishvili D, Schleper C (2013) The legacy of Carl Woese and Wolfram Zillig: from phylogeny to landmark discoveries. Nat Rev Microbiol 11(10):713–719

    Article  CAS  PubMed  Google Scholar 

  • Atkinson GC (2015) The evolutionary and functional diversity of classical and lesser-known cytoplasmic and organellar translational GTPases across the tree of life. BMC Genomics 16:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker BJ, Tyson GW, Webb RI et al (2006) Lineages of acidophilic archaea revealed by community genomic analysis. Science 314(5807):1933–1935

    Article  CAS  PubMed  Google Scholar 

  • Baker BJ, Comolli LR, Dick GJ et al (2010) Enigmatic, ultrasmall, uncultivated Archaea. Proc Natl Acad Sci USA 107(19):8806–8811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldauf SL, Palmer JD, Doolittle WF (1996) The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. Proc Natl Acad Sci USA 93(15):7749–7754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baross JA, Martin WF (2015) The ribofilm as a concept for life’s origins. Cell 162(1):15–15

    Article  CAS  Google Scholar 

  • Bell PJL (2001) Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus? J Mol Evol 53:251–256

    Article  CAS  PubMed  Google Scholar 

  • Booth A, Doolittle WF (2015) Reply to lane and Martin: being and becoming eukaryotes. Proc Natl Acad Sci USA 112(35):E4824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer M, Madoui M-A, Gimenez G et al (2010) Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4th domain of life including giant viruses. PLoS One 5(12):e15530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brochier C, Forterre P, Gribaldo S (2004) Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biol 5(3):R17

    Article  PubMed  PubMed Central  Google Scholar 

  • Brochier C, Forterre P, Gribaldo S (2005a) An emerging phylogenetic core of Archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences. BMC Evol Biol 5:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brochier C, Gribaldo S, Zivanovic Y et al (2005b) Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? Genome Biol 6(5):R42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008a) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6(3):245–252

    Article  CAS  PubMed  Google Scholar 

  • Brochier-Armanet C, Gribaldo S, Forterre P (2008b) A DNA topoisomerase IB in Thaumarchaeota testifies for the presence of this enzyme in the last common ancestor of Archaea and Eucarya. Biol Direct 3:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brochier-Armanet C, Forterre P, Gribaldo S (2011) Phylogeny and evolution of the Archaea: one hundred genomes later. Curr Opin Microbiol 14(3):274–281

    Article  PubMed  Google Scholar 

  • Brown JR, Doolittle WF (1997) Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev 61(4):456–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JR, Douady CJ, Italia MJ et al (2001) Universal trees based on large combined protein sequence data sets. Nat Genet 28(3):281–285

    Article  CAS  PubMed  Google Scholar 

  • Brown CT, Hug LA, Thomas BC et al (2015) Unusual biology across a group comprising more than 15% of domain bacteria. Nature 523(7559):208–211

    Article  CAS  PubMed  Google Scholar 

  • Bruno WJ, Halpern AL (1999) Topological bias and inconsistency of maximum-likelihood using wrong models. Mol Biol Evol 16(4):564–566

    Article  CAS  PubMed  Google Scholar 

  • Brüssow H (2009) The not so universal tree of life or the place of viruses in the living world. Philos Trans R Soc Lond Ser B Biol Sci 364(1527):2263–2274

    Article  CAS  Google Scholar 

  • Camin JH, Sokal RR (1965) A method for deducing branching sequences in phylogeny. Evolution 19:311–323

    Article  Google Scholar 

  • Cammarano P, Palm P, Creti R et al (1992) Early evolutionary relationships among known life forms inferred from elongation factor EF-2/EF-G sequences: phylogenetic coherence and structure of the archaeal domain. J Mol Evol 34(5):396–405

    Article  CAS  PubMed  Google Scholar 

  • Cammarano P, Creti R, Sanangelantoni AM, Palm P (1999) The archaea monophyly issue: a phylogeny of translational elongation factor G(2) sequences inferred from an optimized selection of alignment positions. J Mol Evol 49(4):524–537

    Article  CAS  PubMed  Google Scholar 

  • Castelle CJ, Wrighton KC, Thomas BC et al (2015) Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr Biol 25(6):690–701

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1989) Molecular phylogeny. Archaebacteria and Archezoa. Nature 339(6220):100–101

    Article  Google Scholar 

  • Chaikeeratisak V, Nguyen K, Khanna K et al (2017) Assembly of a nucleus-like structure during viral replication in bacteria. Science 355(6321):194–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciccarelli FD, Doerks T, von Mering C et al. (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311 (5765):1283–7. Erratum in: (2006) Science 312 (5774):697

    Article  CAS  PubMed  Google Scholar 

  • Cobb M (2017) 60 years ago, Francis Crick changed the logic of biology. PLoS Biol 15(9):e2003243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Comolli LR, Baker JB, Downing KH et al (2009) Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon. ISME J 3(2):159–167

    Article  CAS  PubMed  Google Scholar 

  • Cox CJ, Foster PG, Hirt RP et al (2008) The archaebacterial origin of eukaryotes. Proc Natl Acad Sci USA 105(51):20356–20361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creti R, Ceccarelli E, Bocchetta M et al (1994) Evolution of translational elongation factor (EF) sequences: reliability of global phylogenies inferred from EF-1 alpha(Tu) and EF-2(G) proteins. Proc Natl Acad Sci USA 91(8):3255–3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csurös M, Miklós I (2009) Streamlining and large ancestral genomes in Archaea inferred with a phylogenetic birth-and-death model. Mol Biol Evol 26(9):2087–2095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Csurös M, Rogozin IB, Koonin EV (2011) A detailed history of intron-rich eukaryotic ancestors inferred from a global survey of 100 complete genomes. PLoS Comput Biol 7(9):e1002150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Da Cunha V, Gaia M, Gadelle D et al (2017) Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genet 13(6):e1006810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Da Cunha V, Gaia M, Nasir A, Forterre P (2018) Asgard archaea do not close the debate about the universal tree of life topology. PLoS Genet 14(3):e1007215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dacks JB, Field MC, Buick R et al (2016) The changing view of eukaryogenesis – fossils, cells, lineages and how they all come together. J Cell Sci 129(20):3695–3703

    Article  CAS  PubMed  Google Scholar 

  • Dagan T, Martin W (2009) Getting a better picture of microbial evolution en route to a network of genomes. Philos Trans R Soc Lond Ser B Biol Sci 364(1527):2187–2196

    Article  CAS  Google Scholar 

  • de Duve C (2007) The origin of eukaryotes: a reappraisal. Nat Rev Genet 8(5):395–403

    Article  PubMed  CAS  Google Scholar 

  • Degli Esposti M (2016) Late mitochondrial acquisition, really? Genome Biol Evol 8(6):2031–2035

    Article  PubMed  PubMed Central  Google Scholar 

  • Doolittle WF (2009) The practice of classification and the theory of evolution, and what the demise of Charles Darwin’s tree of life hypothesis means for both of them. Philos Trans R Soc Lond Ser B Biol Sci 364(1527):2221–2228

    Article  Google Scholar 

  • Edlind TD, Li J, Visvesvara GS et al (1996) Phylogenetic analysis of beta-tubulin sequences from amitochondrial protozoa. Mol Phylogenet Evol 5(2):359–367

    Article  CAS  PubMed  Google Scholar 

  • Edwards AWF, Cavalli-Sforza LL (1963) The reconstruction of evolution. Heredity 18:553

    Google Scholar 

  • Embley TM, Hirt RP (1998) Early branching eukaryotes? Curr Opin Genet Dev 8(6):624–629

    Article  CAS  PubMed  Google Scholar 

  • Embley TM, Williams TA (2015) Evolution: steps on the road to eukaryotes. Nature 521(7551):169–170

    Article  CAS  PubMed  Google Scholar 

  • Eme L, Spang A, Lombard J et al (2017) Archaea and the origin of eukaryotes. Nat Rev Microbiol 15(12):711–723

    Article  CAS  PubMed  Google Scholar 

  • Eren AM, Esen ÖC, Quince C et al (2015) Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3:e1319

    Article  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 16(6):368–376

    Article  Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155(3760):279–284

    Article  CAS  PubMed  Google Scholar 

  • Forterre P (1995) Thermoreduction, a hypothesis for the origin of prokaryotes. C R Acad Sci III 318(4):415–422

    CAS  PubMed  Google Scholar 

  • Forterre P (2006) Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc Natl Acad Sci USA 103(10):3669–3674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forterre P (2010) Defining life: the virus viewpoint. Orig Life Evol Biosph 40(2):151–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Forterre P (2011) A new fusion hypothesis for the origin of Eukarya: better that previous ones, but probably also wrong. Res Microbiol 62(1):77–91

    Article  CAS  Google Scholar 

  • Forterre P (2012) Darwin’s goldmine is still open: variation and selection run the world. Front Cell Infect Microbiol 2:106

    Article  PubMed  PubMed Central  Google Scholar 

  • Forterre P (2013) The common ancestor of Archaea and Eukarya was not an archaeon. Archaea 2013:372396

    Article  PubMed  PubMed Central  Google Scholar 

  • Forterre P (2015) The universal tree of life: an update. Front Microbiol 6:717

    Article  PubMed  PubMed Central  Google Scholar 

  • Forterre P (2016a) Microbes from Hell. Chicago University Press, Chicago

    Book  Google Scholar 

  • Forterre P (2016b) To be or not to be alive: how recent discoveries challenge the traditional definitions of viruses and life. Stud Hist Phil Biol Biomed Sci 59:100–108

    Article  Google Scholar 

  • Forterre P, Gadelle D (2009) Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res 37(3):679–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forterre P, Gaia M (2016) Giant viruses and the origin of modern eukaryotes. Curr Opin Microbiol 31:44–49

    Article  PubMed  Google Scholar 

  • Forterre P, Philippe H (1999) Where is the root of the universal tree of life? BioEssays 21(10):871–879

    Article  CAS  PubMed  Google Scholar 

  • Forterre P, Gribaldo S, Brochier-Armanet C (2009) Happy together: genomic insights into the unique Nanoarchaeum/Ignicoccus association. J Biol 8(1):7. https://doi.org/10.1186/jbiol110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forterre P, Prangishvili D (2013) The major role of viruses in cellular evolution: facts and hypotheses. Curr Opin Virol 3(5):558–565

    Article  CAS  PubMed  Google Scholar 

  • Forterre P, Krupovic M, Prangishvili D (2014) Cellular domains and viral lineages. Trends Microbiol 22(10):554–558

    Article  CAS  PubMed  Google Scholar 

  • Foster PG, Cox CJ, Embley TM (2009) The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Philos Trans R Soc Lond Ser B Biol Sci 364(1527):2197–2207

    Article  Google Scholar 

  • Furukawa R, Nakagawa M, Kuroyanagi T et al (2017) Quest for ancestors of eukaryal cells based on phylogenetic analyses of aminoacyl-tRNA synthetases. J Mol Evol 84(1):51–66

    Article  CAS  PubMed  Google Scholar 

  • Glansdorff N, Xu Y, Labedan B (2008) The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct 3:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gogarten JP, Kibak H, Dittrich P et al (1989) Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86(17):6661–6665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golyshina OV, Toshchakov SV, Makarova KS et al (2017) ‘ARMAN’ archaea depend on association with euryarchaeal host in culture and in situ. Nat Commun 8(1):60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gould SB, Garg SG, Martin WF (2016) Bacterial vesicles secretion and the evolutionary origin of the eukaryotic endomembrane system. Trends Microbiol 24(7):525–534

    Article  CAS  PubMed  Google Scholar 

  • Gouy M, Li WH (1989) Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree. Nature 339(6220):145–147

    Article  CAS  PubMed  Google Scholar 

  • Gouy M, Baurain D, Philippe H (2015) Rooting the tree of life: the phylogenetic jury is still out. Philos Trans R Soc Lond Ser B Biol Sci 370(1678):20140329

    Article  CAS  Google Scholar 

  • Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46(1):1–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gribaldo S, Cammarano P (1998) The root of the universal tree of life inferred from anciently duplicated genes encoding components of the protein-targeting machinery. J Mol Evol 47(5):508–516

    Article  CAS  PubMed  Google Scholar 

  • Gribaldo S, Philippe H (2002) Ancient phylogenetic relationships. Theor Popul Biol 61(4):391–408

    Article  PubMed  Google Scholar 

  • Gribaldo S, Poole AM, Daubin V et al (2010) The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nat Rev Microbiol 8(10):743–752

    Article  CAS  PubMed  Google Scholar 

  • Grosjean H, Marck C, de Crécy-Lagard V (2007) The various strategies of codon decoding in organisms of the three domains of life: evolutionary implications. Nucleic Acids Symp Ser (Oxf) 51:15–16

    Article  CAS  Google Scholar 

  • Guy L, Ettema TJG (2011) The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol 19(12):580–587

    Article  CAS  PubMed  Google Scholar 

  • Harris JK, Kelley ST, Spiegelman GB, Pace NR (2003) The genetic core of the universal ancestor. Genome Res 13(3):407–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana, IL

    Google Scholar 

  • Hirt RP, Logsdon JM Jr, Healy B et al (1999) Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci USA 96(2):580–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • House CH, Fitz-Gibbon ST (2002) Using homolog groups to create a whole-genomic tree of free-living organisms: an update. J Mol Evol 54(4):539–547

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Larget B, Miller RE, Ronquist F (2002) Potential applications and pitfalls of Bayesian inference of phylogeny. Syst Biol 51(5):673–688

    Article  PubMed  Google Scholar 

  • Huet J, Schnabel R, Sentenac A, Zillig W (1983) Archaebacteria and eukaryotes possess DNA-dependent RNA polymerases of a common type. EMBO J 2(8):1291–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hug LA, Baker BJ, Anantharaman K et al (2016) A new view of the tree of life. Nat Microbiol 1:16048

    Article  CAS  PubMed  Google Scholar 

  • Inagaki Y, Susko E, Fast NM et al (2004) Covarion shifts cause a long-branch attraction artifact that unites microsporidia and archaeabacteria in EF-1alpha phylogenies. Mol Biol Evol 21(7):1340–1349

    Article  CAS  PubMed  Google Scholar 

  • Iwabe N, Kuma K, Hasegawa M et al (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86(23):9355–9359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwabe N, Kuma K, Kishino H et al (1991) Evolution of RNA polymerases and branching patterns of the three major groups of Archaeabacteria. J Mol Evol 32(1):70–78

    Article  CAS  PubMed  Google Scholar 

  • Kamaichi T, Hashimoto T, Nakamura Y et al (1996) Complete nucleotide sequences of the genes encoding translation elongation factors 1alpha and 2 from a microsporidian parasite, Glugea plecoglossi: implications for the deepest branching of eukaryotes. J Biochem 20(6):1095–1103

    Article  Google Scholar 

  • Keeling PJ, Doolittle WF (1996) Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. Mol Biol Evol 13(10):1297–1305

    Article  CAS  PubMed  Google Scholar 

  • Klenk HP, Zillig W (1994) DNA-dependent RNA polymerase subunit B as a tool for phylogenetic reconstructions: branching topology of the archaeal domain. J Mol Evol 38(4):420–432

    Article  CAS  PubMed  Google Scholar 

  • Klenk HP, Palm P, Zillig W (1991) A monophyletic holophyletic archaeal domain versus the ‘eocyte tree’. Trends Biochem Sci 16(8):288–290

    Article  CAS  PubMed  Google Scholar 

  • Knittel K, Lösekman T, Boetus A et al (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71(1):467–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV (2006) The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol Direct 1:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koonin EV (2009) Darwinian evolution in the light of genomics. Nucleic Acids Res 37(4):1011–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV (2015) Archaeal ancestors of eukaryotes: not so elusive any more. BMC Biol 13:84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koonin EV, Dolja VV (2013) A virocentric perspective on the evolution of life. Curr Opin Virol 3(5):546–557

    Article  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Dolja VV, Krupovic M (2015) Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology 479–480:2–25

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG, Collins LJ, Penny D (2006) Genomics and the irreducible nature of eukaryote cells. Science 312(5776):1011–1014

    Article  CAS  PubMed  Google Scholar 

  • Lake JA (1987) A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol 4(2):167–191

    CAS  PubMed  Google Scholar 

  • Lake JA (1988) Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331(6152):184–186

    Article  CAS  PubMed  Google Scholar 

  • Lake JA (1994) Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc Natl Acad Sci USA 91(4):1455–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lake JA, Henderson E, Oakes M, Clark MW (1984) Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc Natl Acad Sci USA 81(12):3786–3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane N, Martin W (2010) The energetics of genome complexity. Nature 467(7318):929–934

    Article  CAS  PubMed  Google Scholar 

  • Lane N, Martin WF (2015) Eukaryotes really are special, and mitochondria are why. Proc Natl Acad Sci USA 112(35):E4823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lartillot N, Philippe H (2004) A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 21(6):1095–1109

    Article  CAS  PubMed  Google Scholar 

  • Lartillot N, Brinkmann H, Philippe H (2007) Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol 7(Suppl 1):S4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lasek-Nesselquist E, Gogarten JP (2013) The effects of model choice and mitigating bias on the ribosomal tree of life. Mol Phylogenet Evol 69(1):17–38

    Article  PubMed  Google Scholar 

  • Lasken RS, Stockwell TB (2007) Mechanism of chimera formation during the multiple displacement amplification reaction. BMC Biotechnol 7:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25(7):1307–1320

    Article  CAS  PubMed  Google Scholar 

  • Lecompte O, Ripp R, Thierry JC et al (2002) Comparative analysis of ribosomal proteins in complete genomes: an exemple of reductive evolution at the domain scale. Nucleic Acids Res 30(24):5382–5390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leipe DD, Araving L, Koonin EV (1999) Did DNA replication evolve twice independently? Nucleic Acids Res 27(17):3389–3401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S (1996) Phylogenetic tree construction using Markov chain Monte Carlo. PhD dissertation, Ohio State University

    Google Scholar 

  • Linkkila TP, Gogarten JP (1991) Tracing origins with molecular sequences: rooting the universal tree of life. Trends Biochem Sci 16(8):287–288

    Article  CAS  PubMed  Google Scholar 

  • López-García P, Moreira D (2006) Selective forces for the origin of the eukaryotic nucleus. BioEssays 28(5):525–533

    Article  PubMed  CAS  Google Scholar 

  • López-García P, Moreira D (2015) Open questions on the origin of Eukaryotes. Trends Ecol Evol 30(11):697–708

    Article  PubMed  PubMed Central  Google Scholar 

  • López-García P, Eme L, Moreira D (2017) Symbiosis in eukaryotic evolution. J Theor Biol 434:20–33

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martijn J, Ettema TJ (2013) From archeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem Soc Trans 41(1):451–457

    Article  CAS  PubMed  Google Scholar 

  • Martin W, Kowallik KV (1999) Annotated English translation of Mereschkowsky’s 1905 paper “Über Natur und Ursprung der Chromatophoren im Pflanzenreiche”. Eur J Phycol 34:287–295

    Google Scholar 

  • Matte-Taillez O, Brochier C, Forterre P, Philippe H (2002) Archaeal phylogeny based on ribosomal proteins. Mol Biol Evol 19(5):631–639

    Article  Google Scholar 

  • Mereschkowski C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604

    Google Scholar 

  • Mereschkowski K (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Ent-stehung der Organismen. Biol Centralbl 30:353–367

    Google Scholar 

  • Michener CD, Sokal RR (1957) A quantitative approach to a problem in classification. Evolution 11(2):130–162

    Article  PubMed Central  Google Scholar 

  • Moreira D, López-García P (2009) Ten reasons to exclude viruses from the tree of life. Nat Rev Microbiol 7(4):306–311

    Article  CAS  PubMed  Google Scholar 

  • Moreira D, López-García P (2015) Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes? Philos Trans R Soc Lond Ser B Biol Sci 370(1678):20140327

    Article  CAS  Google Scholar 

  • Mulkidjanian AY, Makarova KS, Galperin MY, Koonin EV (2007) Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. Nat Rev Microbiol 5(11):892–899

    Article  CAS  PubMed  Google Scholar 

  • Nasir A, Kim KM, Caetano-Anollés G (2015) Lokiarchaeota: eukaryote-like missing links from microbial dark matter? Trends Microbiol 23(8):448–450

    Article  CAS  PubMed  Google Scholar 

  • Nasir A, Kim KM, Da Cunha V, Caetano-Anollés G (2016) Arguments reinforcing the three-domain view of diversified cellular life. Archaea 2016:1851865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nurk S, Bankevich A, Antipov D et al (2013) Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol 20(10):714–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen GJ, Woese CR (1989) A brief note concerning archaebacterial phylogeny. Can J Microbiol 35(1):119–123

    Article  CAS  PubMed  Google Scholar 

  • Olsen GJ, Woese CR (1997) Archaeal genomics: an overview. Cell 89(7):991–994

    Article  CAS  PubMed  Google Scholar 

  • Pace NR, Olsen GJ, Woese CR (1986) Ribosomal RNA phylogeny and the primary lines of evolutionary descent. Cell 45(3):325–326

    Article  CAS  PubMed  Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT et al (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parks DH, Rinke C, Chuvochina M et al (2017) Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2(11):1533–1542

    Article  CAS  PubMed  Google Scholar 

  • Penny D, Hoeppner MP, Poole AM, Jeffares DC (2009) An overview of the introns-first theory. J Mol Evol 69(5):527–540

    Article  CAS  PubMed  Google Scholar 

  • Petitjean C, Deschamps P, López-García P, Moreira D (2014) Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota. Genome Biol Evol 7(1):191–204

    Article  PubMed  PubMed Central  Google Scholar 

  • Philippe H, Forterre P (1999) The rooting of the universal tree of life is not reliable. J Mol Evol 49(4):509–523

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Germot A (2000) Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution. Mol Biol Evol 17(5):830–834

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Germot A, Moreira A (2000a) The new phylogeny of eukaryotes. Curr Opin Genet Dev 10(6):596–601

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Lopez P, Brinkmann H et al (2000b) Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc Biol Sci 267(1449):1213–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisani D, Cotton JA, McInerney JO (2007) Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol Biol Evol 24(8):1752–1760

    Article  CAS  PubMed  Google Scholar 

  • Pittis AA, Gabaldón T (2016) Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531(7592):101–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole AM (2009) Horizontal gene transfer and the earliest stages of the evolution of life. Res Microbiol 160(7):473–480

    Article  CAS  PubMed  Google Scholar 

  • Poole A, Penny D (2001) Does endo-symbiosis explain the origin of the nucleus? Nat Cell Biol 3(8):E173–E174

    Article  CAS  PubMed  Google Scholar 

  • Prangishvili D (2013) The wonderful world of archaeal viruses. Annu Rev Microbiol 67:565–585

    Article  CAS  PubMed  Google Scholar 

  • Pühler G, Leffers H, Gropp G et al (1989) Archaeabacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. Proc Natl Acad Sci USA 86(12):4569–4573

    Article  PubMed  PubMed Central  Google Scholar 

  • Raoult D (2010) The post-Darwinian rhizome of life. Lancet 375(9709):104–105

    Article  PubMed  Google Scholar 

  • Raoult D, Forterre P (2008) Redefining viruses: lessons from Mimivirus. Nat Rev Microbiol 6(4):315–319

    Article  CAS  PubMed  Google Scholar 

  • Raymann K, Brochier-Armanet C, Gribaldo S (2015) The two-domain tree of life is linked to a new root for the Archaea. Proc Natl Acad Sci USA 112(21):6670–6675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499(7459):431–437

    Article  CAS  PubMed  Google Scholar 

  • Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431(7005):152–155

    Article  CAS  PubMed  Google Scholar 

  • Rochette NC, Brochier-Armanet C, Gouy M (2014) Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes. Mol Biol Evol 31(4):832–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14(3):255–274

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Brownlee GG, Barrell BG (1965) A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol 13(2):373–398

    Article  CAS  PubMed  Google Scholar 

  • Sapp J, Fox GE (2013) The singular quest for a universal tree of life. Microbiol Mol Biol Rev 77(4):541–550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schulz F, Eloe-Fadrosh EA, Bowers RM et al (2017) Towards a balanced view of the bacterial tree of life. Microbiome 5(1):140

    Article  PubMed  PubMed Central  Google Scholar 

  • Seitz KW, Lazar CS, Hinrichs KU et al (2016) Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J 10(7):1696–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma V, Colson P, Giorgi R et al (2014) DNA-dependent RNA polymerase detects hidden giant viruses in published databanks. Genome Biol Evol 6(7):1603–1610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma V, Colson P, Chabrol O et al (2015a) Welcome to pandoraviruses at the ‘Fourth TRUC’ club. Front Microbiol 6:423

    PubMed  PubMed Central  Google Scholar 

  • Sharma V, Colson P, Chabrol O et al (2015b) Pithovirus sibericus, a new bona fide member of the ‘Fourth TRUC’ club. Front Microbiol 6:722

    PubMed  PubMed Central  Google Scholar 

  • Sousa FL, Neukirchen S, Allen JF et al (2016) Lokiarchaeon is hydrogen dependent. Nat Microbiol 1:16034

    Article  CAS  PubMed  Google Scholar 

  • Spang A, Hatzenpichler R, Brochier-Armanet C et al (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 18(8):331–340

    Article  CAS  PubMed  Google Scholar 

  • Spang A, Saw JH, Jørgensen S et al (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521(7551):173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spang A, Caceres EF, Ettema TJG (2017) Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 357(6351):eaaf3883

    Article  PubMed  CAS  Google Scholar 

  • Spang A, Eme L, Saw JH et al (2018) Asgard archaea are the closest prokaryotic relatives of eukaryotes. PLoS Genet 14(3):e1007080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stanier RY, Van Niel CB (1962) The concept of a Bacterium. Arch Mikrobiol 42:17–35

    Article  CAS  PubMed  Google Scholar 

  • Stetter KO (1989) Extremely thermophilic chemolithoautotrophic archaebacteria. In: Schlegel HG, Brown B (eds) Autotrophic bacteria. Science Tech Publishers and Springer, Berlin, pp 167–171

    Google Scholar 

  • Stetter KO (2013) A brief history of the discovery of hyperthermophilic life. Biochem Soc Trans 41(1):416–420

    Article  CAS  PubMed  Google Scholar 

  • Stöffler-Meilicke M, Böhme C, Strobel O et al (1986) Structure of ribosomal subunits of M. vannielii: ribosomal morphology as a phylogenetic marker. Science 231(4743):1306–1308

    Article  PubMed  Google Scholar 

  • Swofford DL, Waddell PJ, Huelsenbeck JP et al (2001) Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst Biol 50(4):525–539

    Article  CAS  PubMed  Google Scholar 

  • Takemura M (2001) Poxviruses and the origin of the eukaryotic nucleus. J Mol Evol 52:419–425

    Article  CAS  PubMed  Google Scholar 

  • Tavare S (1986) Some probabilistic and statistical problems on the analysis of DNA sequences? Lect Math Life Sci 17(2):57–86

    Google Scholar 

  • Tornabene TG, Langworthy TA (1979) Diphytanyl and dibiphytanyl glycerol ether lipids of methanogenic archaeabacteria. Science 203(4375):51–53

    Article  CAS  PubMed  Google Scholar 

  • Urbonavicius J, Auxilien S, Walbott H et al (2008) Acquisition of a bacterial RumA-type tRNA(uracil-54,C5)-methyltransferase by Archaea through an ancient horizontal gene transfer. Mol Microbiol 67(2):323–335

    Article  CAS  PubMed  Google Scholar 

  • Vossbrinck CR, Maddox JV, Friedman S et al (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326(6111):411–414

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC, Morowitz HJ (1973) Genome size and evolution. Chromosoma 40:121–122

    Article  CAS  PubMed  Google Scholar 

  • Werner F, Grohmann D (2011) Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol 9(2):85–98

    Article  CAS  PubMed  Google Scholar 

  • Williams TA, Embley TM, Heinz E (2011) Informational gene phylogenies do not support a fourth domain of life for nucleocytoplasmic large DNA viruses. PLoS One 6(6):e21080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams TA, Foster PG, Nye TM et al (2012) A congruent phylogenomic signal places eukaryotes within the Archaea. Proc Biol Sci 279(1749):4870–4879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams TA, Foster PG, Cox CJ, Embley TM (2013) An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504(7479):231–236

    Article  CAS  PubMed  Google Scholar 

  • Williams TA, Szöllősi GJ, Spang A et al (2017) Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc Natl Acad Sci USA 114(23):E4602–E4611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR (1979) A proposal concerning the origin of life on the planet earth. J Mol Evol 13(2):95–101

    Article  CAS  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR (1998) The universal ancestor. Proc Natl Acad Sci USA 95(12):6854–6859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97(15):8392–8396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci USA 99(13):8742–8747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Fox GE (1977a) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74(11):5088–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Fox GE (1977b) The concept of cellular evolution. J Mol Evol 10(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Maniloff J, Zablen LB (1980) Phylogenetic analysis of the mycoplasmas. Proc Natl Acad Sci USA 77(1):494–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87(12):4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf YI, Rogozin IB, Grishin NV, Koonin EV (2002) Genome trees and the tree of life. Trends Genet 18(9):472–479

    Article  CAS  PubMed  Google Scholar 

  • Wolf YI, Makarova KS, Yutin N, Koonin EV (2012) Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer. Biol Direct 7:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Rannala B (2012) Molecular phylogenetics: principles and practice. Nat Rev Microbiol 13(5):303–314

    Article  CAS  Google Scholar 

  • Yang D, Oyaizu Y, Oyaizu H et al (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82(13):4443–4447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yutin N, Makarova KS, Mekhedov SL et al (2008) The deep archaeal roots of eukaryotes. Mol Biol Evol 25(8):1619–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zablen LB, Kissil MS, Woese CR, Buetow DE (1975) Phylogenetic origin of the chloroplast and prokaryotic nature of its ribosomal RNA. Proc Natl Acad Sci USA 72(6):2418–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaremba-Niedzwiedzka K, Caceres EF, Saw JH et al (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541(7637):353–358

    Article  CAS  PubMed  Google Scholar 

  • Zillig W, Stetter KO, Janeković D (1979) DNA-dependent RNA polymerase from the archaebacterium Sulfolobus acidocaldarius. Eur J Biochem 96(3):596–604

    Article  Google Scholar 

  • Zillig W, Prangishvili D, Schleper C et al (1996) Viruses, plasmids and other genetic elements of thermophilic and hyperthermophilic Archaea. FEMS Microbiol Rev 18(2–3):225–236

    Article  CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8(2):357–366

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MG, VDC, and PF are supported by an ERC grant from the European Union’s Seventh Framework Program (FP/2007–2013)/Project EVOMOBIL-ERC Grant Agreement no. 340440. We thank Pabulo Henrique Rampelotto for the opportunity to write this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Forterre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaia, M., Da Cunha, V., Forterre, P. (2018). The Tree of Life. In: Rampelotto, P. (eds) Molecular Mechanisms of Microbial Evolution. Grand Challenges in Biology and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-69078-0_3

Download citation

Publish with us

Policies and ethics