Skip to main content

Mayr Versus Woese: Akaryotes and Eukaryotes

  • Chapter
  • First Online:
Molecular Mechanisms of Microbial Evolution

Part of the book series: Grand Challenges in Biology and Biotechnology ((GCBB))

  • 1387 Accesses

Abstract

In 1998, on the brink of a great public effort that by now has delivered the sequences of thousands of genomes and has annotated these genomes by translating tens of thousands of 3D protein domain structures from their coding sequences, Ernst Mayr and Carl Woese engaged in a debate. At issue were the virtues of phenotypic contra genotypic approaches to phylogeny and taxonomy. Though not conclusive, this confrontation in retrospect illustrates the defects of both their perspectives and simultaneously illuminates the strengths of the approach to phylogenetic systematics that was favored by Willi Hennig. Hennig’s cladism lends itself well to a rigorous exploitation of genome sequence data in which both the genotypic and phenotypic modes replace the technically questionable gene tree approach to deep phylogeny championed by Woese. Diverse phylogenomic data now suggest that though Mayr’s phenetic arguments were incomplete, his division of organisms into two major taxonomic groups, the akaryotes (formerly the prokaryotes) and eukaryotes, is probably correct. Thus, in a phylogeny based on genome repertoires of protein domains, the universal common ancestor of the three superkingdoms descends in two primary lineages, Akaryote and Eukaryote.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abby SS, Tannier E, Gouy M, Daubin V (2012) Lateral gene transfer as a support for the tree of life. Proc Natl Acad Sci 109(13):4962–4967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson G, Kurland C (1991) An extreme codon preference strategy: codon reassignment. Mol Biol Evol 8(4):530–544

    CAS  PubMed  Google Scholar 

  • Andersson SG, Kurland CG (1998) Reductive evolution of resident genomes. Trends Microbiol 6(7):263–268

    Article  CAS  PubMed  Google Scholar 

  • Andersson DI, Näsvall J (2013) New genes arise via innovation, amplification, divergence. Microbe 8(4):166–170

    Google Scholar 

  • Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UCM, Podowski RM, Näslund AK, Eriksson A-S, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396(6707):133–140

    Article  CAS  PubMed  Google Scholar 

  • Attardi G (1985) Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol 93:93–145

    Article  CAS  PubMed  Google Scholar 

  • Baldauf SL, Palmer JD, Doolittle WF (1996) The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. Proc Natl Acad Sci 93(15):7749–7754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg OG, Kurland C (1997) Growth rate-optimised tRNA abundance and codon usage. J Mol Biol 270(4):544–550

    Article  CAS  PubMed  Google Scholar 

  • Berg OG, Kurland C (2002) Evolution of microbial genomes: sequence acquisition and loss. Mol Biol Evol 19(12):2265–2276

    Article  CAS  PubMed  Google Scholar 

  • Bergthorsson U, Andersson DI, Roth JR (2007) Ohno’s dilemma: evolution of new genes under continuous selection. Proc Natl Acad Sci 104(43):17004–17009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkmann H, Philippe H (1999) Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Mol Biol Evol 16(6):817–825

    Article  CAS  PubMed  Google Scholar 

  • Brunet LJ, McMahon JA, McMahon AP, Harland RM (1998) Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280(5368):1455–1457

    Article  CAS  PubMed  Google Scholar 

  • Caetano-Anollés G (2002) Evolved RNA secondary structure and the rooting of the universal tree of life. J Mol Evol 54(3):333–345

    Article  PubMed  CAS  Google Scholar 

  • Castoe TA, de Koning AP, Pollock DD (2010) Adaptive molecular convergence: molecular evolution versus molecular phylogenetics. Commun Integr Biol 3(1):67–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatton ÉPL (1938) Titres et travaux scientifiques (1906–1937) de Edouard Chatton. Impr. E. Sottano, Sète

    Google Scholar 

  • Chothia C, Gough J (2009) Genomic and structural aspects of protein evolution. Biochem J 419:15–28

    Article  CAS  PubMed  Google Scholar 

  • Copley SD (2003) Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr Opin Chem Biol 7(2):265–272

    Article  CAS  PubMed  Google Scholar 

  • Crick F (1981) Life itself: its origin and nature. Simon and Schuster, New York, NY. 192 p

    Google Scholar 

  • Danielsson J, Awad W, Saraboji K, Kurnik M, Lang L, Leinartaitė L, Marklund SL, Logan DT, Oliveberg M (2013) Global structural motions from the strain of a single hydrogen bond. Proc Natl Acad Sci 110(10):3829–3834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. Murray, London

    Book  Google Scholar 

  • Degnan JH, Rosenberg NA (2006) Discordance of species trees with their most likely gene trees. PLoS Genet 2(5):e68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng C, Cheng C-HC, Ye H, He X, Chen L (2010) Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict. Proc Natl Acad Sci 107(50):21593–21598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doolittle RF (1995) The multiplicity of domains in proteins. Annu Rev Biochem 64(1):287–314

    Article  CAS  PubMed  Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284(5423):2124–2128

    Article  CAS  PubMed  Google Scholar 

  • Doolittle RF (2005) Evolutionary aspects of whole-genome biology. Curr Opin Struct Biol 15(3):248–253

    Article  CAS  PubMed  Google Scholar 

  • Doolittle WF (2012) Population genomics: how bacterial species form and why they don’t exist. Curr Biol 22(11):R451–R453

    Article  CAS  PubMed  Google Scholar 

  • Doolittle WF, Brown JR (1994) Tempo, mode, the progenote, and the universal root. Proc Natl Acad Sci 91(15):6721–6728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doolittle WF, Zhaxybayeva O (2013) What is a prokaryote? In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: prokaryotic biology and symbiotic associations. Springer, Berlin

    Chapter  Google Scholar 

  • Dujon B (2010) Yeast evolutionary genomics. Nat Rev Genet 11(7):512–524

    Article  CAS  PubMed  Google Scholar 

  • Ehrenberg M, Kurland CG (1984) Costs of accuracy determined by a maximal growth rate constraint. Q Rev Biophys 17(1):45–82

    Article  CAS  PubMed  Google Scholar 

  • Fontana W, Schuster P (1998) Continuity in evolution: on the nature of transitions. Science 280(5368):1451–1455

    Article  CAS  PubMed  Google Scholar 

  • Forterre P (1992) Neutral terms [14]. Nature 355(6358):305

    Article  Google Scholar 

  • Forterre P, Philippe H (1999) Where is the root of the universal tree of life? Bioessays 21(10):871–879

    Article  CAS  PubMed  Google Scholar 

  • Forterre P, Benachenhou-Lahfa N, Confalonieri F, Duguet M, Elie C, Labedan B (1992) The nature of the last universal ancestor and the root of the tree of life, still open questions. Biosystems 28(1):15–32

    Article  CAS  PubMed  Google Scholar 

  • Gibbon STF, House CH (1999) Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res 27(21):4218–4222

    Article  Google Scholar 

  • Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309(5738):1242–1245

    Article  CAS  PubMed  Google Scholar 

  • Gough J (2005) Convergent evolution of domain architectures (is rare). Bioinformatics 21(8):1464–1471

    Article  CAS  PubMed  Google Scholar 

  • Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313(4):903–919

    Article  CAS  PubMed  Google Scholar 

  • Gouy R, Baurain D, Philippe H (2015) Rooting the tree of life: the phylogenetic jury is still out. Philos Trans R Soc B 370(1678):20140329

    Article  CAS  Google Scholar 

  • Gray MW (2017) Lynn Margulis and the endosymbiont hypothesis: 50 years later. Mol Biol Cell 28(10):1285–1287

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46(1):1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grishin NV (2001) Fold change in evolution of protein structures. J Struct Biol 134(2):167–185

    Article  CAS  PubMed  Google Scholar 

  • Haglund E, Lindberg MO, Oliveberg M (2008) Changes of protein folding pathways by circular permutation overlapping nuclei promote global cooperativity. J Biol Chem 283(41):27904–27915

    Article  CAS  PubMed  Google Scholar 

  • Harish A, Kurland CG (2017a) Akaryotes and eukaryotes are independent descendants of a universal common ancestor. Biochimie 138:168–183

    Article  CAS  PubMed  Google Scholar 

  • Harish A, Kurland CG (2017b) Empirical genome evolution models root the tree of life. Biochimie 138:137–155

    Article  CAS  PubMed  Google Scholar 

  • Harish A, Kurland CG (2017c) Mitochondria are not captive bacteria. J Theor Biol 434:88–98

    Article  CAS  PubMed  Google Scholar 

  • Harish A, Tunlid A, Kurland CG (2013) Rooted phylogeny of the three superkingdoms. Biochimie 95(8):1593–1604

    Article  CAS  PubMed  Google Scholar 

  • Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K (2016) A new view of the tree of life. Nat Microbiol 1:16048

    Article  CAS  PubMed  Google Scholar 

  • Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, Fujie M, Tanaka M, Satoh N, Bachtrog D, Wilson AC (2013) Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153(7):1567–1578

    Article  CAS  PubMed  Google Scholar 

  • Illergård K, Ardell DH, Elofsson A (2009) Structure is three to ten times more conserved than sequence—a study of structural response in protein cores. Proteins 77(3):499–508

    Article  PubMed  CAS  Google Scholar 

  • Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci 86(23):9355–9359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M (1984) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Koskiniemi S, Sun S, Berg OG, Andersson DI (2012) Selection-driven gene loss in bacteria. PLoS Genet 8(6):e1002787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korbel JO et al (2002) SHOT: a web server for the construction of genome phylogenies. Trends Genet 18(3):158–162

    Article  CAS  PubMed  Google Scholar 

  • Kuo C-H, Ochman H (2009) Deletional bias across the three domains of life. Genome Biol Evol 1:145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurland C (1992) Translational accuracy and the fitness of bacteria. Annu Rev Genet 26(1):29–50

    Article  CAS  PubMed  Google Scholar 

  • Kurland CG (2000) Something for everyone: horizontal gene transfer in evolution. EMBO Rep 1(2):92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurland CG (2010) The RNA dreamtime. Bioessays 32(10):866–871

    Article  CAS  PubMed  Google Scholar 

  • Kurland CG, Berg OG (2010) A hitchhikers guide to evolving networks. In: Caetano-Anollés G (ed) Evolutionary genomics and systems biology. Wiley, Hoboken, NJ

    Google Scholar 

  • Kurland C, Collins L, Penny D (2006) Genomics and the irreducible nature of eukaryote cells. Science 312(5776):1011–1014

    Article  CAS  PubMed  Google Scholar 

  • Kurland CG, Canbäck B, Berg OG (2007) The origins of modern proteomes. Biochimie 89(12):1454–1463

    Article  CAS  PubMed  Google Scholar 

  • Lind PA, Berg OG, Andersson DI (2010a) Mutational robustness of ribosomal protein genes. Science 330(6005):825–827

    Article  CAS  PubMed  Google Scholar 

  • Lind PA, Tobin C, Berg OG, Kurland CG, Andersson DI (2010b) Compensatory gene amplification restores fitness after inter-species gene replacements. Mol Microbiol 75(5):1078–1089

    Article  CAS  PubMed  Google Scholar 

  • Lynch M (2007) The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci 104(Suppl 1):8597–8604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeso I, Roy SW, Irimia M (2012) Widespread recurrent evolution of genomic features. Genome Biol Evol 4(4):486–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayr E (1982) The growth of biological thought: diversity, evolution and inheritance. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Mayr E (1998) Two empires or three? Proc Natl Acad Sci U S A 95(17):9720–9723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran NA (2003) Tracing the evolution of gene loss in obligate bacterial symbionts. Curr Opin Microbiol 6(5):512–518

    Article  CAS  PubMed  Google Scholar 

  • Morris JJ, Lenski RE, Zinser ER (2012) The Black Queen hypothesis: evolution of dependencies through adaptive gene loss. MBio 3(2):e00036-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison DA (2006) Phylogenetic analyses of parasites in the new millennium. Adv Parasitol 63:1–124

    Article  PubMed  Google Scholar 

  • Morrison DA (2009) Why would phylogeneticists ignore computerized sequence alignment? Syst Biol 58(1):150–158

    Article  CAS  PubMed  Google Scholar 

  • Mossel E, Steel M (2004) A phase transition for a random cluster model on phylogenetic trees. Math Biosci 187(2):189–203

    Article  PubMed  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(4):536–540

    CAS  PubMed  Google Scholar 

  • Nasir A, Kim KM, Caetano-Anollés G (2015) Lokiarchaeota: eukaryote-like missing links from microbial dark matter? Trends Microbiol 23(8):448–450

    Article  CAS  PubMed  Google Scholar 

  • Näsvall J, Sun L, Roth JR, Andersson DI (2012) Real-time evolution of new genes by innovation, amplification, and divergence. Science 338(6105):384–387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford

    Google Scholar 

  • Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztányi Z, Uversky VN, Obradovic Z, Kurgan L, Dunker AK, Gough J (2013) D2P2: Database of disordered protein predictions. Nucleic Acids Res 41(D1):D508–D516

    Article  CAS  PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. George Alien & Unwin/Springer, London/Berlin

    Book  Google Scholar 

  • Oliveberg M, Wolynes PG (2005) The experimental survey of protein-folding energy landscapes. Q Rev Biophys 38(03):245–288

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE, Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284(5757):604–607

    Article  CAS  PubMed  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276(5313):734–740

    Article  CAS  PubMed  Google Scholar 

  • Pearson WR (1995) Effective protein sequence comparison. Methods Enzymol 266:227–258

    Article  Google Scholar 

  • Penny D (2011) Darwin’s theory of descent with modification, versus the biblical tree of life. PLoS Biol 9(7):e1001096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penny D, Collins L (2010) Evolutionary genomics leads the way. In: Caetano-Anollés G (ed) Evolutionary genomics and systems biology. Wiley, Hoboken, NJ

    Google Scholar 

  • Pethica R, Levitt M, Gough J (2012) Evolutionarily consistent families in SCOP: sequence, structure and function. BMC Struct Biol 12(1):27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philippe H, Forterre P (1999) The rooting of the universal tree of life is not reliable. J Mol Evol 49(4):509–523

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Laurent J (1998) How good are deep phylogenetic trees? Curr Opin Genet Dev 8(6):616–623

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Wörheide G, Baurain D (2011) Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol 9(3):e1000602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu W-T, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499(7459):431–437

    Article  CAS  PubMed  Google Scholar 

  • Rokas A, Carroll SB (2006) Bushes in the tree of life. PLoS Biol 4(11):e352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14(3):225–275

    Article  CAS  Google Scholar 

  • Salichos L, Rokas A (2013) Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497(7449):327–331

    Article  CAS  PubMed  Google Scholar 

  • Silva FJ, Latorre A, Moya A (2001) Genome size reduction through multiple events of gene disintegration in Buchnera APS. Trends Genet 17(11):615–618

    Article  CAS  PubMed  Google Scholar 

  • Singer GA, Hickey DA (2003) Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content. Gene 317:39–47

    Article  CAS  PubMed  Google Scholar 

  • Smith JM, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Res 23(1):23–35

    Article  CAS  PubMed  Google Scholar 

  • Snel B, Bork P, Huynen MA (1999) Genome phylogeny based on gene content. Nat Genet 21(1):108–110

    Article  CAS  PubMed  Google Scholar 

  • Stanier RY, van Niel C (1962) The concept of a bacterium. Arch Microbiol 42(1):17–35

    CAS  Google Scholar 

  • Tekaia F, Lazcano A, Dujon B (1999) The genomic tree as revealed from whole proteome comparisons. Genome Res 9(6):550–557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Theobald DL, Wuttke DS (2005) Divergent evolution within protein superfolds inferred from profile-based phylogenetics. J Mol Biol 354(3):722–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tourasse NJ, Gouy M (1999) Accounting for evolutionary rate variation among sequence sites consistently changes universal phylogenies deduced from rRNA and protein-coding genes. Mol Phylogenet Evol 13(1):159–168

    Article  CAS  PubMed  Google Scholar 

  • Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 5(4):316–323

    Article  CAS  PubMed  Google Scholar 

  • Viklund J, Ettema TJ, Andersson SG (2012) Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade. Mol Biol Evol 29(2):599–615

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Kurland CG, Caetano-Anollés G (2011) Reductive evolution of proteomes and protein structures. Proc Natl Acad Sci 108(29):11954–11958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler Q, Assis L, Rieppel O (2013) Phylogenetics: heed the father of cladistics. Nature 496(7445):295–296

    Article  CAS  PubMed  Google Scholar 

  • Wiley EO, Lieberman BS (2011) Phylogenetics: theory and practice of phylogenetic systematics. Wiley, New York

    Book  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR (1998) Default taxonomy: Ernst Mayr’s view of the microbial world. Proc Natl Acad Sci U S A 95(19):11043–11046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci 97(15):8392–8396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci 87(12):4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf YI, Koonin EV (2013) Genome reduction as the dominant mode of evolution. Bioessays 35(9):829–837

    Article  PubMed  PubMed Central  Google Scholar 

  • Worth CL, Gong S, Blundell TL (2009) Structural and functional constraints in the evolution of protein families. Nat Rev Mol Cell Biol 10(10):709–720

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci U S A 82(13):4443–4447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Doolittle RF, Bourne PE (2005) Phylogeny determined by protein domain content. Proc Natl Acad Sci U S A 102(2):373–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, Seitz KW, Anantharaman K, Starnawski P, Kjeldsen KU, Stott MB, Nunoura T, Banfield JF, Schramm A, Baker BJ, Spang A, Ettema TJG (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541(7637):353–358

    Article  CAS  PubMed  Google Scholar 

  • Zmasek CM, Godzik A (2011) Strong functional patterns in the evolution of eukaryotic genomes revealed by the reconstruction of ancestral protein domain repertoires. Genome Biol 12(1):R4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuckerkandl E, Pauling L (1965a) Evolutionary divergence and convergence in proteins. In: Vogel VBH (ed) Evolving gene and proteins. Academic Press, New York, pp 97–166

    Chapter  Google Scholar 

  • Zuckerkandl E, Pauling L (1965b) Molecules as documents of evolutionary history. J Theor Biol 8(2):357–366

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Siv Andersson, Otto Berg, Dan Dykhuizen, Måns Ehrenberg, Julian Gough, Diarmaid Hughes, Bruce Levin, Michael Levitt, Mikael Oliveberg, David Penny, Antonis Rokas, Anders Tunlid, Richard Villems, and Irmgard Winkler for essential criticism and help in preparing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajith Harish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurland, C.G., Harish, A. (2018). Mayr Versus Woese: Akaryotes and Eukaryotes. In: Rampelotto, P. (eds) Molecular Mechanisms of Microbial Evolution. Grand Challenges in Biology and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-69078-0_2

Download citation

Publish with us

Policies and ethics