Skip to main content

The Marine Ecosystem as a Source of Antibiotics

  • Chapter
  • First Online:
Grand Challenges in Marine Biotechnology

Abstract

There has been a decline in the development of antibiotics over the past few decades. Following the discovery of penicillin in 1928, 15–20 new antibiotics were developed each decade. However, in the last 10 years, only six have been marketed. In addition to this decrease in the development of new antimicrobial agents, the number of bacteria showing multiresistance to the existing antibiotics has raised an important problem in clinical settings. There is, therefore, a need to find new molecules with antimicrobial activity. In this regard, nature is an enormous source of biodiversity and may provide us with new molecules from plants, fungi, and other macro- and microorganisms. Indeed, the seas and oceans are currently being investigated in the search for new molecules. Nowadays, about 100 million species make up the earth’s waters, and these organisms could be an important source of chemical substances active against infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spellberg B, Powers JH, Brass EP, Miller LG, Edwards J Jr (2004) Trends in antimicrobial drug development: implications for the future. Clin Infect Dis 38:1279–1286

    Article  PubMed  CAS  Google Scholar 

  2. Powers JH (2004) Antimicrobial drug development—the past, the present, and the future. Clin Microbiol Infect 10(Suppl 4):23–31

    Article  PubMed  Google Scholar 

  3. Saga T, Yamaguchi K (2009) History of antimicrobial agents and resistant bacteria. Jpn Med Assoc J 52:103–108

    Google Scholar 

  4. Cassell GH, Mekalanos J (2001) Development of antimicrobial agents in the era of new and reemerging infectious diseases and increasing antibiotic resistance. JAMA 285:601–605

    Article  PubMed  CAS  Google Scholar 

  5. Bassetti M, Merelli M, Temperoni C, Astilean A (2013) New antibiotics for bad bugs: where are we? Ann Clin Microbiol Antimicrob 28:12–22

    Google Scholar 

  6. Wright GD (2014) Something old, something new: revisiting natural products in antibiotic drug discovery. Can J Microbiol 60:147–154

    Article  PubMed  CAS  Google Scholar 

  7. Hughes CC, Fenical W (2010) Antibacterials from the sea. Chemistry 16:12512–12525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134

    Article  PubMed  PubMed Central  Google Scholar 

  9. Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    Article  PubMed  CAS  Google Scholar 

  10. Supriya JS, Yogesh CS (2010) Marine: the ultimate source of bioactives and drug metabolites. Int J Res Ayurveda Pharm 1:55–62

    Article  Google Scholar 

  11. Leiva S, Yáñez M, Zaror L et al (2004) Actividad antimicrobiana de actinomycetes aislados desde ambientes acuáticos del sur de Chile. Rev Méd Chile 132:151–159

    Article  PubMed  Google Scholar 

  12. Mutaz Al-Ajlani M, Hasnain S (2010) Bacteria exhibiting antimicrobial activities; screening for antibiotics and the associated genetic studies. Open Conf Proc J 1:230–238

    Article  Google Scholar 

  13. Abad MJ, Bedoya LM, Bermejo P (2011) Marine compounds and their antimicrobial activities. Fortamex:1293–1306

    Google Scholar 

  14. Carté BK (1996) Biomedical potential of marine natural products. Bioscience 46:271–286

    Article  Google Scholar 

  15. Jan PA, Douglas EL (2016) Ocean sediments—an enormous but underappreciated microbial habitat. Microbe 427–437

    Google Scholar 

  16. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2010) Marine natural products. Nat Prod Rep 27:165–237

    Article  PubMed  CAS  Google Scholar 

  17. Kumar Jha R, Zi-Rong X (2004) Biomedical compounds from marine organisms. Mar Drugs 2:123–146

    Article  Google Scholar 

  18. Biswas K, Paul D, Sinha SN (2016) Marine bacteria: a potential tool for antibacterial activity. J Appl Environ Microbiol 4:25–29

    CAS  Google Scholar 

  19. Armstrong E, Yan L, Boyd KG, Wright PC, Burgess JG (2001) The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461:37–40

    Article  Google Scholar 

  20. Jeganathan P, Rajasekaran KM, Devi NKA, Karuppusamy S (2013) Antimicrobial activity and characterization of marine bacteria. Indian J Pharm Biol Res 1:38–44

    Article  Google Scholar 

  21. El-Gendy MMA, Shaaban M, El-Bondkly AM, Shaaban KA (2008) Bioactive benzopyrone derivatives from new recombinant fusant of marine streptomyces. Appl Biochem Biotechnol 150:85–96

    Article  PubMed  CAS  Google Scholar 

  22. Lu XL, Xu QZ, Shen YH et al (2008) Macrolactin S, a novel macrolactin antibiotic from marine Bacillus sp. Nat Prod Res 22:342–347

    Article  PubMed  CAS  Google Scholar 

  23. Berger M, Neumann A, Schulz S, Simon M, Brinkhoff T (2011) Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-acyl homoserine lactone-mediated quorum sensing. J Bacteriol 193:6576–6585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. D’Alvise PW, Magdenoska O, Melchiorsen J, Nielsen KF, Gram L (2013) Biofilm formation and antibiotic production in Ruegeria mobilis are influenced by intracellular concentrations of cyclic dimeric guanosinmonophosphate. Environ Microbiol 16:1252–1266

    Article  PubMed  CAS  Google Scholar 

  25. Desjardine K, Pereira A, Wright H, Matainaho T, Kelly M, Andersen RJ (2007) Tauramamide, a lipopeptide antibiotic produced in culture by Brevibacillus laterosporus isolated from a marine habitat: structure elucidation and synthesis. J Nat Prod 70:1850–1853

    Article  PubMed  CAS  Google Scholar 

  26. Engelhardt K, Degnes KF, Kemmler M, Bredholt H, Fjaervik E, Klinkenberg G, Sletta H, Ellingsen TE, Zotchev SB (2010) Production of a new thiopeptide antibiotic, TP-1161, by a marine Nocardiosis species. Appl Environ Microbiol 76:4969–4976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Fehér D, Barlow R, McAtee J, Hemscheidt TK (2010) Highly brominated antimicrobial metabolites from a marine Pseudoalteromonas sp. J Nat Prod 73:1963–1966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Isnansetyo A, Kamei Y (2009) Anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of MC21-B, an antibacterial compound produced by the marine bacterium Pseudoalteromonas phenolica O-BC30T. Int J Antimicrob Agents 34:131–135

    Article  PubMed  CAS  Google Scholar 

  29. Andrianasolo EH, Haramaty L, Rosario-Passapera R, Vetriani C, Falkowski P, White E, Lutz R (2012) Ammonificins C and D, hydroxyethylamine chromene derivatives from a cultured marine hydrothermal vent bacterium, Thermovibrio ammonificans. Mar Drugs 10:2300–2311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Han JS, Cheng JH, Yoon TM, Song J, Rajkarnikar A, Kim WG et al (2005) Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. J Appl Microbiol 99:213–221

    Article  PubMed  CAS  Google Scholar 

  31. Cetina A, Matos A, Garma G, Barba H, Vázquez R, Zepeda-Rodríguez A, Jay D, Monteón V, López AR (2010) Marine bacteria isolated from Gulf of Mexico antimicrobial activity of marine bacteria isolated from Gulf of Mexico Actividad antimicrobiana de bacterias marinas aisladas del Golfo de México. Rev Peru Biol 17:231–236

    Google Scholar 

  32. Lu X, Liu X, Long C et al (2011) A preliminary study of the microbial resources and their biological activities of the East china sea. Evid Based Complement Alternat Med 2011:806485

    PubMed  PubMed Central  Google Scholar 

  33. Brinkhoff T, Bach G, Heidorn T, Liang L, Schlingloff A, Simon M (2004) Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol 70:2560–2565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bruhn JB, Gram L, Belas R (2007) Production of antibacterial compounds and biofilm formation by Roseobacter species are influenced by culture conditions. Appl Environ Microbiol 73:442–450

    Article  PubMed  CAS  Google Scholar 

  35. D’Alvise PW, Lillebø S, Prol-Garcia MJ, Wergeland HI, Nielsen KF, Bergh Ø, Gram L (2012) Phaeobacter gallaeciensis reduces Vibrio anguillarum in cultures of microalgae and rotifers, and prevents vibriosis in cod larvae. PLoS One 7(8):e43996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Liu RF, Zhang DJ, Li YG et al (2010) A new antifungal cyclic lipopeptide from Bacillus marinus B-9987. Helv Chim Acta 93:2419–2425

    Article  CAS  Google Scholar 

  37. Chen L, Wang N, Wang X, Hu J, Wang S (2010) Characterization of two anti-fungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10. Bioresour Technol 101:8822–8827

    Article  PubMed  CAS  Google Scholar 

  38. Oku N, Kawabata K, Adachi K et al (2008) Unnarmicins a and C, new antibacterial depsipeptides produced by marine bacterium Photobacterium sp. MBIC06485. J Antibiot (Tokyo) 61:11–17

    Article  CAS  Google Scholar 

  39. Oku N, Adachi K, Matsuda S et al (2008) Ariakemicins a and B, novel polyketide-peptide antibiotics from a marine gliding bacterium of the genus Rapidithrix. Org Lett 10:2481–2484

    Article  PubMed  CAS  Google Scholar 

  40. Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine of marine ascomycota, anamorphic taxa and basidiomycota. Fungal Divers 35:1–187

    Google Scholar 

  41. Kohlmeyer J, Kohlmeyer E (1979) Marine mycology. The higher fungi. Academic, New York

    Google Scholar 

  42. Jones EBG (2011) Fifty years of marine mycology. Fungal Divers 50:73–112

    Article  Google Scholar 

  43. Walker AK, Campbell J (2010) Marine fungal diversity: a comparison of natural and created salt marshes of the north-central Gulf of Mexico. Mycologia 102:513–521

    Article  PubMed  Google Scholar 

  44. Zhou S, Wang M, Feng Q, Lin Y, Zhao H (2016) A study on biological activity of marine fungi from different habitats in coastal regions. SpringerPlus 5:1966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Prompanya C, Dethoup T, Bessa L, Pinto M, Gales L, Costa P, Silva A, Kijjoa A (2014) New Isocoumarin derivatives and Meroterpenoids from the marine sponge-associated fungus Aspergillus similanensis sp. nov. KUFA 0013. Mar Drugs 12:5160–5173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Liu F, Xia J, Wang W (2013) Isolation and identification of two terphenyl compounds from Aspergillus candidus metabolites. J Xiamen Univ 52:670–674

    CAS  Google Scholar 

  47. Fredimoses M, Zhou X, Lin X, Tian X, Ai W, Wang J, Liao S, Liu J, Yang B, Yang X (2014) New prenylxanthones from the deep-sea derived fungus Emericella sp. SCSIO 05240. Mar Drugs 12:3190–3202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bai ZQ, Lin X, Wang Y, Wang J, Zhou X, Yang B, Liu J, Yang X, Wang Y, Liu Y (2014) New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius. Fitoterapia 95:194–202

    Article  PubMed  CAS  Google Scholar 

  49. Li C, Blencke HM, Haug T, Jorgensen O, Stensvag K (2014) Expression of antimicrobial peptides in coelomocytes and embryos of the green sea urchin (Strongylocentrotus droebachiensis). Dev Comp Immunol 43:106–113

    Article  PubMed  CAS  Google Scholar 

  50. Daferner M, Anke T, Sterner O (2002) Zopfiellamides A and B, antimicrobial pyrrolidinone derivatives from the marine fungus Zopfiella latipes. Tetrahedron 58:7781–7784

    Article  CAS  Google Scholar 

  51. Van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, de Voogd NJ, Alvarez de Glasby B, Hajdu E, Pisera AB, Manconi R, Schoenberg C, Klautau M, Picton B, Kelly M, Vacelet J, Dohrmann M, Díaz MC, Cárdenas P, Carballo JL (2017) World Porifera Database. http://www.marinespecies.org/porifera. Accessed 1 Feb 2017

  52. Bell JJ (2008) The functional roles of marine sponges. Estuar Coast Shelf Sci 79:341–353

    Article  Google Scholar 

  53. Van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, de Voogd NJ, Alvarez de Glasby B, Hajdu E, Pisera AB, Manconi R, Schoenberg C, Klautau M, Picton B, Kelly M, Vacelet J, Dohrmann M, Díaz MC, Cárdenas P, Carballo JL (2011) World Porifera Database. http://www.marinespecies.org/porifera/porifera.php?p=taxdetails&id=131587. Accessed 1 Feb 2017

  54. Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol (9):641–654

    Article  PubMed  CAS  Google Scholar 

  55. Mayer AMS, Rodríguez AD, Taglia-latela-Scafati O, Fusetani N (2013) Marine pharmacology in 2009–2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 11(7):2510–2573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2016) Marine natural products. Nat Prod Rep 3:382–431

    Article  Google Scholar 

  57. Cheuka P, Mayoka G, Mutai P, Chibale K (2016) The role of natural products in drug discovery and development against neglected tropical diseases. Molecules 22:58

    Article  CAS  PubMed Central  Google Scholar 

  58. Urban S, de Almeida LP, Carroll AR, Fechner GA, Smith J, HooperJNA QRJ (1999) Axinellamines A−D, novel imidazo−azolo−imidazole alkaloids from the Australian marine sponge Axinella sp. OrgChem 64:731–735

    CAS  Google Scholar 

  59. Chen C, Ma Z, Wang X, Ma Y (2016) Asymmetric synthesis of axinellamines a and B. Angew Chem Int Ed 55:4763–4766

    Article  CAS  Google Scholar 

  60. Zidar N, Montalvão S, Hodnik Z, Nawrot DA, Žula A, Ilaš J, Kikelj D, Tammela P, Mašič LP (2014) Antimicrobial activity of the marine alkaloids, clathrodin and oroidin, and their synthetic analogues. Mar Drugs 12(2):940–963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Melander RJ, Liu HB, Stephens MD, Bewley CA, Melander C (2016) Marine sponge alkaloids as a source of anti-bacterial adjuvants. Bioorg Med Chem Lett 26(24):5863–5866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zhang Z (2011) Animal biodiversity: an introduction to higher-level classification and taxonomic richness. Zootaxa 3148:7–12

    Google Scholar 

  63. Crossland CJ, Hatcher BG, Smith SV (1991) Role of coral reefs in global ocean production. Coral Reefs 10:55

    Article  Google Scholar 

  64. Marques AC, Collins AG (2004) Cladistic analysis of Medusozoa and cnidarian evolution. Invertebr Biol 123(1):23–42

    Article  Google Scholar 

  65. Mariottini GL (2014) Hemolytic venoms from marine cnidarian jellyfish—an overview. J Venom Res 5:22–32

    PubMed  PubMed Central  Google Scholar 

  66. Ospina CA, Rodríguez AD, Zhao H, Raptis RG (2007) Bipinnapterolide B, a bioactive oxapolycyclic diterpene from the Colombian gorgonian coral Pseudopterogorgia bipinnata. Tetrahedron Lett 48:7520–7523

    Article  CAS  Google Scholar 

  67. Bishara A, Rudi A, Goldberg I, Benayahu Y, Kashman Y (2006) Novaxenicins A–D and xeniolides I–K, seven new diterpenes from the soft coral Xenia novaebrittanniae. Tetrahedron 62:12092–12097

    Article  CAS  Google Scholar 

  68. McCulloch MWB, Haltli B, Marchbank DH, Kerr RG (2012) Evaluation of pseudopteroxazole and pseudopterosin derivatives against Mycobacterium tuberculosis and other pathogens. Mar Drugs 10:1711–1728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ata A, Win HY, Holt D, Holloway P, Segstro EP, Jayatilake GS (2004) New antibacterial diterpenes from Pseudopterogorgia elisabethae. Helv Chim Acta 87:1090–1098

    Article  CAS  Google Scholar 

  70. Rodríguez II, Rodríguez AD (2003) Homopseudopteroxazole, a new antimycobacterial diterpene alkaloid from Pseudopterogorgia elisabethae. J Nat Prod 66(6):855–857

    Article  PubMed  CAS  Google Scholar 

  71. Correa H, Aristizabal F, Duque C, Kerr R (2011) Cytotoxic and antimicrobial activity of pseudopterosins and seco-pseudopterosins isolated from the octocoral Pseudopterogorgia Elisabethae of San Andrés and Providencia Islands (Southwest Caribbean Sea). Mar Drugs 9(3):334–343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wei MY, Wang CY, Liu QA, Shao CL, She ZG, Lin YC (2010) Five ses-quiterpenoids from a marine-derived fungus Aspergillus sp. isolated from a gorgonian Dichotella gemmacea. Mar Drugs 8(4):941–949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. El Sayed KA, Bartyzel P, Shen X, Perry TL, Zjawiony JK, Hamann MT (2000) Marine natural products as antituberculosis agents. Tetrahedron 56:949–953

    Article  Google Scholar 

  74. Liang LF, Lan LF, Taglialatela-Scafati O, Guo YW (2013) Sartrolides AeG and bissartrolide, new cembranolides from the South China Sea soft coral Sarcophyton trocheliophorum Marenzeller. Tetrahedron 69:7381–7386

    Article  CAS  Google Scholar 

  75. Shenkarev ZO, Panteleev PV, Balandin SV, Gizatullina AK, Altukhov DA, Finkina EI, Kokryakov VN, Arseniev AS, Ovchinnikova TV (2012) Recombinant expression and solution structure of antimicrobial peptide aurelin from jellyfish Aurelia aurita. Biochem Biophys Res Commun 429:63–69

    Article  PubMed  CAS  Google Scholar 

  76. Jung S, Dingley AJ, Augustin R, Anton-Erxleben F, Stanisak M, Gelhaus C, Gutsmann T, Hammer MU, Podschun R, Bonvin AM, Leippe M, Bosch T, Grötzinger J (2009) Hydramacin-1, structure and antibacterial activity of a protein from the basal metazoan hydra. J Biol Chem 284(3):1896–1905

    Article  PubMed  CAS  Google Scholar 

  77. Bosch TCG, Augustin R, Anton-Erxleben F, Fraune S, Hemmrich G, Zill H, Rosenstiel P, Jacobs G, Schreiber S, Leippe M et al (2009) Uncovering the evolutionary history of innate immunity: the simple metazoan hydra uses epithelial cells for host defence. Dev Comp Immunol 33:559–569

    Article  PubMed  CAS  Google Scholar 

  78. Augustin R, Anton-Erxleben F, Jungnickel S et al (2009) Activity of the novel peptide arminin against multiresistant human pathogens shows the considerable potential of phylogenetically ancient organisms as drug sources. Antimicrob Agents Chemother 53(12):5245–5250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Augustin R, Siebert S, Bosch T (2009) Identification of a kazal-type serine pro-tease inhibitor with potent anti-staphylococcal activity as part of Hydra’s in-nate immune system. Dev Comp Immunol 33:830–837

    Article  PubMed  CAS  Google Scholar 

  80. Bock PE, Gordon DP (2013) Phylum Bryozoa Ehrenberg, 1831. Zootaxa 3703(1):67–74

    Article  Google Scholar 

  81. Gordon DP (1987) The deep-sea Bryozoa of the New Zealand region. In: Ross JRP (ed) Bryozoa: present and past western. Washington University, Bellingham, pp 97–104

    Google Scholar 

  82. Figuerola B, Sala-Comorera L, Angulo-Preckler C, Vázquez J, Montes MJ, García-Aljaro C, Mercadé E, Blanch AR, Avila C (2014) Antimicrobial activity of Antarctic bryozoans: an ecological perspective with potential for clinical applications. Mar Environ Res 101:52–59

    Article  PubMed  CAS  Google Scholar 

  83. Prinsep M, Yao B, Nicholson B, Gordon DP (2004) The pterocellins, bioactive alkaloids from the marine bryozoan Pterocella vesiculosa. Phytochem Rev 3:325–331

    Article  CAS  Google Scholar 

  84. Till M, Prinsep MR (2009) 5-Bromo-8-methoxy-1-methyl-β-carboline, an alkaloid from the New Zealand marine bryozoan Pterocella vesiculosa. J Nat Prod 72:796–798

    Article  PubMed  CAS  Google Scholar 

  85. Tadesse M, Tabudravu JN, Jaspars M, Strom MB, Hansen E, Andersen JH, Kristiansen PE, Haug T (2011) The antibacterial ent-eusynstyelamide B and eusynstyelamides D, E, and F from the arctic bryozoan Tegella cf. spitzbergensis. J Nat Prod 74:837–841

    Article  PubMed  CAS  Google Scholar 

  86. Brusca RC, Brusca GJ, Martínez FP (2005) Invertebrados. McGraw-Hill, Madrid

    Google Scholar 

  87. Periyasamy N, Srinivasan M, Balakrishnan S (2012) Antimicrobial activities of the tissue extracts of Babylonia spirata Linnaeus, 1758 (Mollusca: Gastropoda) from Thazhanguda, southeast coast of India. Asian Pac J Trop Biomed 2:36–40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate zoology: a functional evolutionary approach. Syst Biol 53:662–664

    Article  Google Scholar 

  89. Dakhil DZ, Tahar AA (2010) Antimicrobial activity of some crude marine Mollusca extracts against some human pathogenic bacteria. Thi-Qar Med J 4:142–147

    Google Scholar 

  90. Schmutterer H (2005) Mollusca, molluscs. In: Schmutterer H (ed) Neem tree source unique natural. Products for integrated pest management, medicine, industry and other purposes. VCH, Weinheim, pp 151–152

    Google Scholar 

  91. Sarumathi G, Arumugam M, Kumaresan S, Balasubramanian T (2012) Studies on bioprospecting potential of a gastropod mollusc Cantharus tranquebaricus (Gmelin, 1791). Asian Pac J Trop Biomed 2:759–764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. He JY, Chi CF, Liu HH (2014) Identification and analysis of an intracellular cu/Zn superoxide dismutase from Sepiella maindroni under stress of Vibrio harveyi and Cd2+. Dev Comp Immunol 47:1–5

    Article  PubMed  CAS  Google Scholar 

  93. He X, Hwang H-M, Aker WG, Wang P, Lin Y, Jiang X, He X (2014) Synergistic combination of marine oligosaccharides and azithromycin against Pseudomonas aeruginosa. Microbiol Res 169:759–767

    Article  PubMed  CAS  Google Scholar 

  94. Datta D, Nath Talapatra S, Swarnakar S (2015) Bioactive compounds from marine invertebrates for potential medicines—an overview. Int Lett Nat Sci 7:42–61

    Google Scholar 

  95. Gustafson K, Andersen RJ (1985) Chemical studies of British columbia nudibranchs. Tetrahedron 41:1101–1108

    Article  CAS  Google Scholar 

  96. Kiran N, Siddiqui G, Khan AN, Ibrar K, Tushar P (2014) Extraction and screening of bioactive compounds with antimicrobial properties from selected species of mollusk and crustacean. J Clin Cell Immunol 5:1–5

    Google Scholar 

  97. De Petrocellis L, Orlando P, Pierobon P, De Falco M, Ruggiero AM, Stefano GS, Tino A, Grippo P (1999) Kelletinin a, from the marine mollusc Buccinulum corneum, promotes differentiation in Hydra vulgaris. Res Commun Mol Pathol Pharmacol 103:17–28

    PubMed  Google Scholar 

  98. Orlando P, Carretta F, Grippo P, Cimino G, De Stefano S, Strazzullo G (1991) Kelletinin I and kelletinin a from the marine mollusc Buccinulum corneum are inhibitors of eukaryotic DNA polymerase alpha. Experientia 47:64–66

    Article  PubMed  CAS  Google Scholar 

  99. Anbuselvi S, Chellaram C, Jonesh S, Jayanthi L, Edward JKP (2009) Bioactive potential of coral associated gastropod, Trochus tentorium of Gulf of Mannar, southeastern India. J Med Sci 9:240–244

    Article  Google Scholar 

  100. Vino AB, Shanmugam V, Shanmugam A (2014) Antimicrobial activity of methanolic extract and fractionated polysaccharide from Loligo duvauceli Orbingy 1848 and Doryteuthis sibogae Adam 1954 on human pathogenic microorganisms. Afr J Microbiol Res 8:230–236

    Article  Google Scholar 

  101. Shanmugam A, Amalraj T, Gnanasekar Devanathan CP, Balasubramanian T (2008) Antimicrobial activity of sulfated mucopolysaccharides [heparin and heparin-like glycosaminoglycans (GAGs)] from Cuttlefish Euprymna Berryi Sasaki, 1929. Trends Appl Sci Res 3:97–102

    Article  CAS  Google Scholar 

  102. Kanagasabapathy S, Samuthirapandian R, Kumaresan M (2011) Preliminary studies for a new antibiotic from the marine mollusk Melo melo (Lightfoot, 1786). Asian Pac J Trop Med 4:310–314

    Article  PubMed  CAS  Google Scholar 

  103. Dolashka P, Dolashki A, Voelter W, Van Beeumen J, Stevanovic S (2015) Antimicrobial activity of peptides from the hemolymph of Helix lucorum snails. Int J Curr Microbiol App Sci 4:1061–1071

    CAS  Google Scholar 

  104. Dolashka P, Moshtanska V, Borisova V, Dolashki A, Stevanovic S, Dimanov T, Voelter W (2011) Antimicrobial proline-rich peptides from the hemolymph of marine snail Rapana venosa. Peptides 32:1477–1483

    Article  PubMed  CAS  Google Scholar 

  105. Castillo MG, Salazar KA, Joffe NR (2015) The immune response of cephalopods from head to foot. Fish Shellfish Immunol 46:145–160

    Article  PubMed  CAS  Google Scholar 

  106. Boyle P, Rodhouse P (2007) Cephalopods: ecology and fisheries. Wiley, Oxford

    Google Scholar 

  107. Rajasekharan Nair J, Pillai D, Joseph SM et al (2011) Cephalopod research and bioactive substances. Indian J Mar Sci 40:13–27

    Google Scholar 

  108. Ramasamy P, Subhapradha N, Srinivasan A et al (2011) In vitro evaluation of antimicrobial activity of methanolic extract from selected species of cephalopods on clinical isolates. Afr J Microbiol Res 5:3884–3889

    Article  Google Scholar 

  109. Shanmugam A, Mahalakshmi TS, Barwin Vino A (2008) Antimicrobial activity of polysaccharide isolated from the cuttlebone of Sepia aculeata (Orbingy, 1848) and Sepia brevimana (Steenstrup, 1875): an approach to selected antimicrobial activity for human pathogenic microorganisms. Fish Aquat Sci 3:268–274

    Article  Google Scholar 

  110. Lavelle P (1996) Diversity of soil fauna and ecosystem function. Biol Int 33:3–16

    Google Scholar 

  111. Nosrati H, Nosrati M, Karimi R (2013) The phylum annelida: a short introduction. Agric Sci Dev 2:28–30

    Google Scholar 

  112. Cuvillier-Hot V, Boidin-Wichlacz C, Tasiemski A (2014) Polychaetes as annelid models to study ecoimmunology of marine organisms. J Mar Sci Technol 22:9–14

    Google Scholar 

  113. Otero-González AJ, Magalhães BS, Garcia-Villarino M, López-Abarrategui C, Sousa DA, Dias SC, Franco OL (2010) Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB J 24:1320–1334

    Article  PubMed  CAS  Google Scholar 

  114. Tasiemski A (2008) Antimicrobial peptides in annelids. Invertebr Surviv J 5:75–82

    Google Scholar 

  115. Maltseva AL, Kotenko ON, Kokryakov VN, Starunov VV, Krasnodembskaya AD (2014) Expression pattern of arenicins-the antimicrobial peptides of polychaete Arenicola marina. Front Physiol 5:1–11

    Article  Google Scholar 

  116. Anderson RS, Chain BM (1982) Antibacterial activity in the coelomic fluid of a marine annelid, Glycera dibranchiata. J Invertebr Pathol 40:320–326

    Article  Google Scholar 

  117. Chain BM, Anderson RS (1983) Antibacterial of the coelomic fluid from the polichaeta, Glycera dibranchiata. II. Partial purification and biochemical characterization of the active factor. Biol Bull 164:41–49

    Article  CAS  Google Scholar 

  118. Pan W, Liu X, Ge F, Han J, Zheng T (2004) Perinerin, a novel antimicrobial peptide purified from the clamworm Perinereis aibuhitensis Grube and its partial characterization. J Biochem 135:297–304

    Article  PubMed  CAS  Google Scholar 

  119. Ovchinnikova TV, Aleshina GM, Balandin SV, Krasnosdembskaya AD, Markelov ML, Frolova EI, Leonova YF, Tagaev AA, Krasnodembsky EG, Kokryakov VN (2004) Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaeta Arenicola marina. FEBS Lett 577:209–214

    Article  PubMed  CAS  Google Scholar 

  120. Tasiemski A, Schikorski D, Le Marrec-Croq F, Pontoire-Van Camp C, Boidin-Wichlacz C, Sautière PE (2007) Hedistin: a novel antimicrobial peptide containing bromotryptophan constitutively expressed in the NK cells-like of the marine annelid, Nereis diversicolor. Dev Comp Immunol 31:749–762

    Article  PubMed  CAS  Google Scholar 

  121. Bulet P, Stöcklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184

    Article  PubMed  CAS  Google Scholar 

  122. Zhou Q, Li M, Xi T (2009) Cloning and expression of a clamworm antimicrobial peptide perinerin in Pichia pastoris. Curr Microbiol 58:384–388

    Article  PubMed  CAS  Google Scholar 

  123. Elayaraja S, Murugesan P, Vijayalakshmi S, Balasubramanian T (2010) Antibacterial and antifungal activities of polychaete Perinereis cultrifera. Indian. J Mar Sci 39:257–261

    Google Scholar 

  124. El-Gamal MI, Abdel-Maksoud MS, CH O (2013) Recent advances in the research and development of marine antimicrobial peptides. Curr Top Med Chem 13:2026–2033

    Article  PubMed  CAS  Google Scholar 

  125. Kondo M, Akasaka K (2012) Current status of echinoderm genome analysis—what do we know? Curr Genomics 13:134–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Li C, Blencke HM, Haug T, Stensvåg K (2015) Antimicrobial peptides in echinoderm host defense. Dev Comp Immunol 49:190–197

    Article  PubMed  CAS  Google Scholar 

  127. Motuhi S-E, Mehiri M, Payri C et al (2016) Marine natural products from new Caledonia—a review. Mar Drugs 14:58

    Article  PubMed Central  CAS  Google Scholar 

  128. Uthicke S, Schaffelke B, Byrne M (2009) A boom–bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol Monogr 79:3–24

    Article  Google Scholar 

  129. Li C, Haug T, Stensvåg K (2010) Antimicrobial peptides in Echinoderms. Invertebr Surviv J 7:132–140

    Article  CAS  Google Scholar 

  130. Solstad RG, Li C, Isaksson J, Johansen J, Svenson J, Stensvåg K, Haug T (2016) Novel antimicrobial peptides EeCentrocins 1, 2 and EeStrongylocin 2 from the Edible sea urchin Echinus esculentus have 6-br-trp post-translational modifications. PLoS One 11:1–25

    Article  CAS  Google Scholar 

  131. Loker ES, Adema CM, Zhang SM, Kepler TB (2004) Invertebrate immune systems—not homogeneous, not simple, not well understood. Immunol Rev 198:10–24

    Article  PubMed  PubMed Central  Google Scholar 

  132. Adibpour N, Nasr F, Nematpour F, Shakouri A, Ameri A (2014) Antibacterial and antifungal activity of Holothuria leucospilota isolated from Persian gulf and Oman Sea. Jundishapur J Microbiol 7:1–4

    Article  Google Scholar 

  133. García-arrarás JE, Ramirez-gomez FJ (2010) Echinoderm immunity. Invertebr Surviv J 7:211–220

    Google Scholar 

  134. Abubakar L, Mwangi C, Uku J, Ndirangu S (2012) Antimicrobial activity of various extracts of the sea urchin Tripneustes gratilla (Echinoidea). Afr J Pharmacol Ther 1:19–23

    Google Scholar 

  135. Canicatti C, Roch P (1989) Studies on Holothuria polk (Eehinodermata) antibacterial proteins. I. Evidence for and activity of a coelomocyte lysozyme. Experientia 45:756–759

    Article  CAS  Google Scholar 

  136. Stabili L, Licciano M, Pagliara P (1994) Evidence of antibacterial and lysozyme-like activity in different planktonic larval stages of Paracentrotus lividus. Mar Biol 119:501–505

    Article  Google Scholar 

  137. Leonard LA, Strandberg JD, Winkelstein JA (1990) Complement-like activity in the sea star, Asterias forbesi. Dev Comp Immunol 14:19–30

    Article  PubMed  CAS  Google Scholar 

  138. Beauregard KA, Truong NT, Zhang H, Lin W, Beck G (2001) The detection and isolation of a novel antimicrobial peptide from the Echinoderm Cucumaria Frondosa. In: Beck G, Sugumaran M, Cooper EL (eds) Phylogenetic perspectives on the vertebrate immune system. Springer US, Boston, pp 55–62

    Chapter  Google Scholar 

  139. Service M, Wardlaw AC (1984) Echinochrome-a as a bactericidal substance in the coelomic fluid of Echinus esculentus (L.). Comp Biochem Physiol B Biochem 79:161–165

    Article  Google Scholar 

  140. Ageenko NV, Kiselev KV, Dmitrenok PS, Odintsova NA (2014) Pigment cell differentiation in sea urchin blastula-derived primary cell cultures. Mar Drugs 12:3874–3891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Li C, Haug T, Styrvold OB, Jørgensen TØ, Stensvåg K (2008) Strongylocins, novel antimicrobial peptides from the green sea urchin, li. Dev Comp Immunol 32:1430–1440

    Article  PubMed  CAS  Google Scholar 

  142. Li C, Haug T, Moe MK, Styrvold OB, Stensvåg K (2010) Centrocins: isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev Comp Immunol 34:959–968

    Article  PubMed  CAS  Google Scholar 

  143. Björn C, Håkansson J, Myhrman E, Sjöstrand V, Haug T, Lindgren K, Blencke HM, Stensvåg K, Mahlapuu M (2012) Anti-infectious and anti-inflammatory effects of peptide fragments sequentially derived from the antimicrobial peptide centrocin 1 isolated from the green sea urchin, Strongylocentrotus droebachiensis. AMB Exp 2:67

    Article  CAS  Google Scholar 

  144. Schillaci D, Arizza V, Parrinello N, Di Stefano V, Fanara S, Muccilli V, Cunsolo V, Haagensen JJA, Molin S (2010) Antimicrobial and antistaphylococcal biofilm activity from the sea urchin Paracentrotus lividus. J Appl Microbiol 108:17–24

    Article  PubMed  CAS  Google Scholar 

  145. Stabili L, Pagliara L, Roch P (1996) Antibacterial activity in the coelomocytes of the sea urchin Paracentrotus lividus. Comp Biochem Physiol B 113:639–644

    Article  PubMed  CAS  Google Scholar 

  146. Zou Z, Yi Y, Wu H et al (2005) Intercedensides D-I, cytotoxic triterpene glycosides from the sea cucumber Mensamaria intercedens lampert. J Nat Prod 68:540–546

    Article  PubMed  CAS  Google Scholar 

  147. Haug T, Kjuul AK, Styrvold OB, Sandsdalen E, Olsen ØM, Stensvåg K (2002) Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens (Asteroidea). J Invertebr Pathol 81:94–102

    Article  PubMed  CAS  Google Scholar 

  148. Wang H, Liu Y, Li M, Huang H, Xu HM, Hong RJ, Shen H (2010) Multifunctional TiO2 nanowires-modified nanoparticles bilayer film for 3D dye-sensitized solar cells. Optoelectron Adv Mater Rapid Commun 4:1166–1169

    CAS  Google Scholar 

  149. Pereira DM, Valento P, Andrade PB (2014) Marine natural pigments: chemistry, distribution and analysis. Dyes Pigments 111:124–134

    Article  CAS  Google Scholar 

  150. Babenkova IV, Teselkin IO, Makashova NV, Guseva MR (1999) Antioxidative activity of histochrome and some other drugs used in ophthalmology. Vestn Oftalmol 115:22–24

    PubMed  CAS  Google Scholar 

  151. Heilmann C, Hussain M, Peters G, Götz F (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024

    Article  PubMed  CAS  Google Scholar 

  152. Schillaci D, Cusimano MG, Russo D, Arizza V (2014) Antimicrobial peptides from echinoderms as antibiofilm agents: a natural strategy to combat bacterial infections. Ital J Zool 81:312–321

    Article  CAS  Google Scholar 

  153. Chen JY, Huang DY, Peng QQ, Chi HM, Wang XQ, Feng M (2003) The first tunicate from the early Cambrian of South China. Proc Natl Acad Sci USA 100:8314–8318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Stolfi A, Brown F (2015) Evolutionary developmental biology of invertebrates 6: Deuterostomia. Springer, Vienna, pp 135–204

    Book  Google Scholar 

  155. Sings H, Rinehart K (1996) Compounds produced from potential tunicate-blue-green algal symbiosis: a review. J Ind Microbiol 17:385–396

    CAS  Google Scholar 

  156. Yankova L (2014) Chemical profiling and biological activity of two tunicate-associated marine bacteria. Honors Scholar Theses, p 336

    Google Scholar 

  157. Aassila H, Bourguet-Kondracki ML, Rifai S, Fassouane A, Guyot M (2003) Identification of Harman as the antibiotic compound produced by a tunicate-associated bacterium. Mar Biotechnol 5:163–166

    Article  CAS  Google Scholar 

  158. Sikorska J, Parker-Nance S, Davies-Coleman MT, Vining OB, Sikora AE, McPhail KL (2012) Antimicrobial rubrolides from a south African species of Synoicum tunicate. J Nat Prod 75:1824–1827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Karak M, Acosta JAM, Barbosa LCA, Boukouvalas J (2016) Late-stage bromination enables the synthesis of rubrolides B, I, K, and O. Eur J Org Chem 22:1099–0690

    Google Scholar 

  160. Bontemps N, Bry D, López-Legentil S, Simon-Levert A, Long C, Banaigs B (2010) Structures and antimicrobial activities of pyridoacridine alkaloids isolated from different chromotypes of the ascidian Cystodytes dellechiajei. J Nat Prod 73:1044–1048

    Article  PubMed  CAS  Google Scholar 

  161. Tadesse M, Strøm MB, Svenson J, Jaspars M, Milne BF, Tørfoss V, Andersen JH, Hansen E, Stensvåg K, Haug T (2010) Synoxazolidinones A and B: novel bioactive alkaloids from the ascidian Synoicum pulmonaria. Org Lett 12:4752–4755

    Article  PubMed  CAS  Google Scholar 

  162. Taylor SW, Craig AG, Fischer WH, Park M, Lehrer RI (2000) Styelin D, an extensively modified antimicrobial peptide from ascidian hemocytes. J Biol Chem 275:38417–38426

    Article  PubMed  CAS  Google Scholar 

  163. Woong SJ, Kyu NK, Young SL, Myung HN, In HL (2002) Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Lett 521:81–86

    Article  Google Scholar 

  164. Wyche TP, Hou Y, Vazquez-Rivera E, Braun D, Bugni TS (2012) Peptidolipins B-F, antibacterial lipopeptides from an ascidian-derived Nocardia sp. J Nat Prod 75:735–740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Weber T, Laiple KJ, Pross EK, Textor A, Grond S, Welzel K, Pelzer S, Vente A, Wohlleben W (2008) Molecular analysis of the kirromycin biosynthetic gene cluster revealed β-alanine as precursor of the pyridone moiety. Chem Biol 15:175–188

    Article  PubMed  CAS  Google Scholar 

  166. Shannon E, Abu-Ghannam N (2016) Antibacterial derivatives of marine algae: an overview of pharmacological mechanisms and applications. Mar Drugs 14(81):1–23

    Google Scholar 

  167. Blunt JW, Munro MHG, Copp BR, Keyzers RA, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32:116–211

    Article  PubMed  CAS  Google Scholar 

  168. Cardozo KHM, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C Toxicol Pharmacol 146(1–2):60–78

    Article  PubMed  CAS  Google Scholar 

  169. Holanda ML, Melo VM, Silva LM, Amorim RC, Pereira MG, Benevides NM (2005) Differential activity of a lectin from Solieria filiformis against human pathogenic bacteria. Braz J Med Biol Res 38:1769–1773

    Article  PubMed  CAS  Google Scholar 

  170. Lee SH, Kim SK (2015) Biological phlorotannins of Eisenia bicyclis. In: Kim SK, Chojnacka K (eds) Marine algae extracts: processes, products, and applications. Wiley, Oxford, pp 453–464

    Google Scholar 

  171. Besednova NN, Zaporozhets TS, Somova LM, Kuznetsova TA (2015) Review: prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori. Helicobacter 20:89–97

    Article  PubMed  CAS  Google Scholar 

  172. Kadam SU, O’Donnell CP, Rai DK, Hossain MB, Burgess CM, Walsh D, Tiwari BK (2015) Laminarin from Irish brown seaweeds Ascophyllum nodosum and Laminaria Hyperborea: ultrasound assisted extraction, characterization and bioactivity. Mar Drugs 13:4270–4280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Deyab MA, Abou-Dobara MI (2013) Antibacterial activity of some marine algal extracts against most nosocomial bacterial infections. Egypt J Exp Biol 9:281–286

    Google Scholar 

  174. Rajauria G, Abu-Ghannam N (2013) Isolation and partial characterization of bioactive fucoxanthin from Himanthalia elongata Brown seaweed: a TLC-based approach. Int J Anal Chem 2013:802573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472

    Article  PubMed  CAS  Google Scholar 

  176. Pierre G, Sopena V, Juin C, Mastouri A, Graber M, Maugard T (2011) Antibacterial activity of a sulfated galactan extracted from the marine alga Chaetomorpha aerea against Staphylococcus aureus. Biotechnol Bioprocess Eng 16:937–945

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara M. Soto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López, Y., Cepas, V., Soto, S.M. (2018). The Marine Ecosystem as a Source of Antibiotics. In: Rampelotto, P., Trincone, A. (eds) Grand Challenges in Marine Biotechnology. Grand Challenges in Biology and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-69075-9_1

Download citation

Publish with us

Policies and ethics