Skip to main content
Book cover

Aeroecology pp 179–198Cite as

Facing the Wind: The Aeroecology of Vertebrate Migrants

  • Chapter
  • First Online:

Abstract

The aerosphere is an essential part of the habitat of flying vertebrates. Birds and bats make use of the airspace for daily activities like foraging, commuting, mating, and seasonal movements including migration. In this chapter, we focus on how the properties of the aerosphere affect migration and a few other regular large-scale movements. For animals moving between seasonally favourable habitats across hundreds or thousands of kilometres, the conditions of the aerosphere have a substantial impact on energy and time demands, on orientation and navigation, and finally on survival. Although bats and birds often make similar use of the aerosphere, there is a huge difference in our actual knowledge of these interactions. There are about 4000 migratory bird species comprising 100–150 billion individuals undertaking regular seasonal movements within and between continents and across the oceans. Our understanding of bat migration is much more limited and such estimates are not available, but many bat species and many millions of individuals show similar kinds of migratory behaviour. Atmospheric conditions vary across time and space, including variation in air flow and air temperature, humidity, and density. In this chapter, we emphasize the importance of wind and precipitation as the main factors driving behaviour and evolutionary adaptations. Flying within a moving air space, bats and birds can make use of regular seasonal wind fields, like the trade and anti-trade winds, but they also must deal with irregular events, like heavy storms. In combination with the distribution of their preferred habitats, large-scale atmospheric conditions guide their flight routes and shape their migratory strategies. The timing of individual flight stages is directed by weather conditions, mainly wind and precipitation. Once aloft, individuals may select among varying wind conditions at different flight altitudes to achieve beneficial wind conditions en route. These behavioural patterns have a strong effect on the time needed to move between suitable habitats, but probably more importantly on overall energy demand and thus foraging time/cost and survival. While birds are known to explore heights up to 8000 m asl during migration, bats are generally restricted to heights below 3000 m asl, possibly due to differences in lung morphology. On the other hand, many bats can withstand harsh weather conditions by using torpor, while birds may have to leave or starve. Birds and bats are confronted with the regular occurrence of both predictable (e.g. wind support deviations from target) and unpredictable (e.g. storms) displacements and are therefore equipped with excellent orientation capabilities (Chap. 6). This chapter provides the background of what we really know about the role of the aerosphere for the migration of birds and bats and where we still marvel.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamík P, Emmenegger T, Briedis M, Gustafsson L, Henshaw I, Krist M, Laaksonen T, Liechti F, Procházka P, Salewski V, Hahn S (2016) Barrier crossing in small avian migrants: individual tracking reveals prolonged nocturnal flights into the day as a common migratory strategy. Sci Rep 6:21560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alerstam T (1979) Wind as a selective agent in bird migration. Ornis Scand 10:76–93

    Article  Google Scholar 

  • Alerstam T (1990) Bird migration. Cambridge University Press, Cambridge

    Google Scholar 

  • Alerstam T (2011) Optimal bird migration revisited. J Ornithol 152:5–23

    Article  Google Scholar 

  • Alerstam T, Hedenström A, Åkesson S (2003) Long-distance migration: evolution and determinants. Oikos 103:247–260

    Article  Google Scholar 

  • Alerstam T, Rosen M, Bäckman J, Ericson PGP, Hellgren O (2007) Flight speeds among bird species: allometric and phylogenetic effects. PLoS Biol 5:e197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alexander RM (2006) Principles of animal locomotion, 2nd edn. University Press, Princeton

    Google Scholar 

  • Alves JA, Shamoun-Baranes J, Desmet P, Dokter A, Bauer S, Hüppop O et al (2016) Monitoring continent - wide aerial patterns of bird movements usi ng weather radars. In: Proceedings of the BOU’s 2015 Annual Conference, #BOU2015 2015, pp 1–5

    Google Scholar 

  • Arnett EB, Baerwald EF (2013) Impacts of wind energy development on bats: implications for conservation. In: Adams RA, Pedersen SC (eds) Bat evolution, ecology, and conservation. Springer, New York, pp 435–456

    Chapter  Google Scholar 

  • Arnett EB, Baerwald EF, Matthews F, Rodrigues L, Rodríguez-Durán A, Rydell J, Villegas-Patraca R, Voigt CC (2016) Impacts of wind energy development on bats: a global perspective. In: Voigt CC, Kingston T (eds) Bats in the Anthropocene: conservation in a Changing World. Springer, Cham, pp 295–324

    Chapter  Google Scholar 

  • Baerwald EF, Barclay RMR (2009) Geographic variation in activity and fatality of migratory bats at wind energy facilities. J Mammal 90:1341–1349

    Article  Google Scholar 

  • Baerwald EF, Barclay RMR (2011) Patterns of activity and fatality of migratory bats at a wind energy facility in Alberta, Canada. J Wildl Manag 75:1103–1114

    Article  Google Scholar 

  • Battley PF, Warnock N, Tibbitts TL, Gill RE, Piersma T, Hassell CJ, Douglas DC, Mulcahy DM, Gartrell BD, Schuckard R, Melville DS, Riegen AC (2012) Contrasting extreme long-distance migration patterns in bar-tailed godwits Limosa lapponica. J Avian Biol 43:21–32

    Article  Google Scholar 

  • Bauchinger U, Wohlmann A, Biebach H (2005) Flexible remodeling of organ size during spring migration of the garden warbler (Sylvia borin). Zoology 108:97–106

    Article  PubMed  Google Scholar 

  • Bauer S, Lisovski S, Hahn S (2016) Timing is crucial for consequences of migratory connectivity. Oikos 125:605–612

    Article  Google Scholar 

  • Berthold P (2001) Bird migration—a general survey, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Bishop CM, Spivey RJ, Hawkes LA, Batbayar N, Chua B, Frappell PB, Milsom WK, Natsagdorj T, Newman SH, Scott GR, Takekawa JY, Wikelski M, Butler PJ (2015) The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations. Science 347:250–254

    Article  CAS  PubMed  Google Scholar 

  • Bisson I-A, Safi K, Holland RA (2009) Evidence for repeated independent evolution of migration in the largest family of bats. PLoS One 4:e7504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonaccorso FJ, McGuire LP (2013) Modeling the colonization of Hawaii by hoary bats (Lasiurus cinereus). In: Adams RA, Pedersen SC (eds) Bat ecology, evolution, and conservation. Springer, New York, pp 187–206

    Chapter  Google Scholar 

  • Bowlin MS, Bisson I-A, Shamoun-Baranes J, Reichard JD, Sapir N, Marra PP, Kunz TH, Wilcove DS, Hedenström A, Guglielmo CG, Åkesson S, Ramenofsky M, Wikelski M (2010) Grand challenges in migration biology. Integr Comp Biol 50:261–279

    Article  PubMed  Google Scholar 

  • Bowlin MS, Enstrom DA, Murphy BJ, Plaza E, Jurich P, Cochran J (2015) Unexplained altitude changes in a migrating thrush: long-flight altitude data from radio-telemetry. Auk 132:808–816

    Article  Google Scholar 

  • Breuner CW, Sprague RS, Patterson SH, Woods HA (2013) Environment, behavior and physiology: do birds use barometric pressure to predict storms? J Exp Biol 216:1982–1990

    Article  PubMed  Google Scholar 

  • Brown RE, Fedde MR (1993) Airflow sensors in the avian wing. J Exp Biol 179:13–30

    Google Scholar 

  • Bruderer B (1971) Radarbeobachtungen über den Frühlingszug im Schweizerischen Mittelland. (Ein Beitrag zum Problem der Witterungsabhängigkeit des Vogelzugs). Ornithol Beob 68:89–158

    Google Scholar 

  • Bruderer B (1975) Zur Schwalbenkatastrophe im Herbst 1974. Tierwelt 4–6:1–20

    Google Scholar 

  • Bruderer B, Boldt A (2001) Flight characteristics of birds: I. Radar measurements of speeds. Ibis 143:178–204

    Article  Google Scholar 

  • Bruderer B, Underhill LG, Liechti F (1995) Altitude choice of night migrants in a desert area predicted by meteorological factors. Ibis 137:44–55

    Article  Google Scholar 

  • Bruderer B, Peter D (2017) Windprofit favouring extreme altitudes of bird migration. Ornithologische Beobachter 114:73–86

    Google Scholar 

  • Byng JW, Racey PA, Swaine MD (2009) The ecological impacts of a migratory bat aggregation on its seasonal roost in Kasanka National Park, Zambia. Afr J Ecol 48:29–36

    Article  Google Scholar 

  • Chapman JW, Nilsson C, Lim KS, Bäckman J, Reynolds DR, Alerstam T (2016) Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind. J Anim Ecol 85:115–124

    Article  PubMed  Google Scholar 

  • Cockrum EL (1969) Migration in the guano bat, Tadarida brasiliensis. Misc Pub Univ Kansas Museum Nat Hist 51:303–336

    Google Scholar 

  • Cryan PM, Brown AC (2007) Migration of bats past a remote island offers clues toward the problem of bat fatalities at wind turbines. Biol Conserv 139:1–11

    Article  Google Scholar 

  • Davenport J (1994) How and why do flying fish fly? Rev Fish Biol Fish 4:184–214

    Article  Google Scholar 

  • Dechmann DKN, Wikelski M, Ellis-Soto D, Safi K, Teague O’Mara M (2017) Determinants of spring migration departure decision in a bat. Biol Lett 13(9):20170395

    Article  PubMed  PubMed Central  Google Scholar 

  • Delingat J, Bairlein F, Hedenström A (2008) Obligatory barrier crossing and adaptive fuel management in migratory birds: the case of the Atlantic crossing in Northern Wheatears (Oenanthe oenanthe). Behav Ecol Sociobiol 62:1069–1078

    Article  Google Scholar 

  • DeLuca WV, Woodworth BK, Rimmer CC, Marra PP, Taylor PD, McFarland KP, Mackenzie SA, Norris DR (2015) Transoceanic migration by a 12 g songbird. Biol Lett 11:20141045

    Article  PubMed  PubMed Central  Google Scholar 

  • Dokter AM, Shamoun-Baranes J, Kemp MU, Tijm S, Holleman I (2013) High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance. PLoS One 8:e52300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dossman BC, Mitchell GW, Norris DR, Taylor PD, Guglielmo CG, Matthews SN, Rodewald PG (2016) The effects of wind and fuel stores on stopover departure behavior across a migratory barrier. Behav Ecol 27:567–574

    Article  Google Scholar 

  • Dudley R, Byrnes G, Yanoviak SP, Borrell B, Brown RM, McGuire JA (2007) Gliding and the functional origins of flight: biomechanical novelty or necessity? Annu Rev Ecol Evol Syst 38:179–201

    Article  Google Scholar 

  • Egevang C, Stenhouse IJ, Phillips RA, Petersen A, Fox JW, Silk JRD (2010) Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proc Natl Acad Sci USA 107:2078–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eikenaar C, Schmaljohann H (2015) Wind conditions experienced during the day predict nocturnal restlessness in a migratory songbird. Ibis 157:125–132

    Article  Google Scholar 

  • Elkins N (1988) Can high-altitude migrants recognize optimum flight levels? Ibis 130:562–563

    Article  Google Scholar 

  • Engel S, Herbert B, Visser GH (2006) Metabolic costs of avian flight in relation to flight velocity: a study in Rose Coloured Starlings (Sturnus roseus, Linnaeus). J Comp Physiol B 176:415–427

    Article  PubMed  Google Scholar 

  • Erni B, Liechti F, Bruderer B (2003) How does a first year passerine migrant find its way? Simulating migration mechanisms and behavioural adaptations. Oikos 103:333–340

    Article  Google Scholar 

  • Erni B, Liechti F, Bruderer B (2005) The role of wind in passerine autumn migration between Europe and Africa. Behav Ecol 16:732–740

    Article  Google Scholar 

  • Finlayson JC, Garcia EFJ, Mosquera MA, Bourne WRP (1976) Raptor migration across the Strait of Gibraltar. Br Birds 69:77–87

    Google Scholar 

  • Fleming TH, Eby P (2003) Ecology of bat migration. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago, pp 156–208

    Google Scholar 

  • Fleming TH, Nuñez RA, Sternberg LSL (1993) Seasonal changes in the diets of migrant and non-migrant nectarivorous bats as revealed by carbon stable isotope analysis. Oecologia 74:72–75

    Article  Google Scholar 

  • Frick WF, Baerwald EF, Pollock JF, Barclay RMR, Szymanski JA, Weller TJ, Russell AL, Loeb SC, Medellin RA, McGuire LP (2017) Fatalities at wind turbines may threaten population viability of a migratory bat. Biol Conserv 209:172–177

    Article  Google Scholar 

  • Frick WF, Chilson PB, Fuller NW, Bridge ES, Kunz TH (2013) Aeroecology. In: Adams RA, Pedersen SC (eds) Bat ecology, evolution, and conservation. Springer, New York, pp 149–168

    Chapter  Google Scholar 

  • Gaston KJ, Blackburn TM (1997) How many birds are there? Biodivers Conserv 6:615–625

    Article  Google Scholar 

  • Geiser F, Brigham RM (2012) The Other Functions of Torpor. In: Ruf T, Bieber C, Arnold W, Millesi E (eds) Living in a Seasonal World. Springer, Heidelberg

    Google Scholar 

  • Gerson AR, Guglielmo CG (2011) House sparrows (Passer domesticus) increase protein catabolism in response to water restriction. Am J Phys 300:R925–R930

    CAS  Google Scholar 

  • Giavi S, Moretti M, Bontadina F, Zambelli N, Schaub M (2014) Seasonal survival probabilities suggest low migration mortality in migrating bats. PLoS One 9:e85628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gill RE, Piersma T, Hufford G, Servranckx R, Riegen A (2005) Crossing the ultimate ecological barrier: evidence for an 11000-km-long nonstop flight from Alaska to New Zealand and Eastern Australia by bar-tailed godwits. Condor 107:1–20

    Article  Google Scholar 

  • Gill RE Jr, Tibbitts TL, Douglas DC, Handel CM, Mulcahy DM, Gottschalck JC, Warnock N, McCaffery BJ, Battley PF, Piersma T (2009) Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? Proc R Soc B 276:447–457

    Article  PubMed  Google Scholar 

  • Gill J, Douglas DC, Handel CM, Tibbitts TL, Hufford G, Piersma T (2014) Hemispheric-scale wind selection facilitates bar-tailed godwit circum-migration of the Pacific. Anim Behav 90:117–130

    Article  Google Scholar 

  • Green M, Alerstam T, Gudmundsson GA, Hedenström A, Piersma T (2004) Do Arctic waders use adaptive wind drift? J Avian Biol 35:305–315

    Article  Google Scholar 

  • Greenberg R, Marra PP (2005) Birds of two worlds: the ecology and evolution of migration. The John Hopkins University Press, Baltimore

    Google Scholar 

  • Grüebler MU, Korner-Nievergelt F, Naef-Daenzer B (2014) Equal nonbreeding period survival in adults and juveniles of a long-distant migrant bird. Ecol Evol 4:756–765

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn S, Bauer S, Liechti F (2009) The natural link between Europe and Africa – 2.1 billion birds on migration. Oikos 118:624–626

    Article  Google Scholar 

  • Hawkes LA, Balachandran S, Batbayar N, Butler PJ, Frappell PB, Milsom WK, Tseveenmyadag N, Newman SH, Scott GR, Sathiyaselvam P, Takekawa JY, Wikelski M, Bishop CM (2011) The trans-Himalayan flights of bar-headed geese (Anser indicus). Proc Natl Acad Sci 108(23):9516–9519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkes LA, Balachandran S, Batbayar N, Butler PJ, Chua B, Douglas DC, Frappell PB, Hou Y, Milsom WK, Newman SH, Prosser DJ, Sathiyaselvam P, Scott GR, Takekawa JY, Natsagdorj T, Wikelski M, Witt MJ, Yan B, Bishop CM (2013) The paradox of extreme high-altitude migration in bar-headed geese Anser indicus. Proc R Soc B 280:20122114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedenström A, Alerstam T (1997) Optimum fuel loads in migratory birds: distinguishing between time and energy minimization. J Theor Biol 189:227–234

    Article  PubMed  Google Scholar 

  • Hedenström A, Norevik G, Warfvinge K, Andersson A, Bäckman J, Åkesson S (2016) Annual 10-Month Aerial Life Phase in the Common Swift Apus apus. Curr Biol 26(22):3066–3070

    Article  PubMed  CAS  Google Scholar 

  • Horn JW, Kunz TH (2008) Analyzing NEXRAD Doppler radar images to assess nightly dispersal patterns and population trends in Brazilian free-tailed bats (Tadarida brasiliensis). Integr Comp Biol 48:24–39

    Article  PubMed  Google Scholar 

  • Horton KG, Van Doren BM, Stepanian PM, Farnsworth A, Kelly JF (2016a) Where in the air? Aerial habitat use of nocturnally migrating birds. Biol Lett 12(11):20160591

    Article  PubMed  PubMed Central  Google Scholar 

  • Horton KG, Van Doren BM, Stepanian PM, Hochachka WM, Farnsworth A, Kelly JF (2016b) Nocturnally migrating songbirds drift when they can and compensate when they must. Sci Rep 6(1)

    Google Scholar 

  • Horvitz N, Sapir N, Liechti F, Avissar R, Mahrer I, Nathan R (2014) The gliding speed of migrating birds: slow and safe or fast and risky? Ecol Lett 17:670–679

    Article  PubMed  Google Scholar 

  • Hüppop O, Hüppop K (2003) North Atlantic Oscillation and timing of spring migration in birds. Proc R Soc B Biol Sci 270(1512):233–240

    Article  Google Scholar 

  • Hutterer R, Teodora I, Meyer-Cords C, Rodrigues L (2005) Bat migrations in Europe. Naturschutz und Biologische Vielfalt, Bonn

    Google Scholar 

  • Jenni L, Jenni-Eiermann S (1998) Fuel supply and metabolic constraints in migrating birds. J Avian Biol 29:521–528

    Article  Google Scholar 

  • Kahlert J, Leito A, Laubek B, Luigujõe L, Kuresoo A, Aaen K, Luud A (2012) Factors affecting the flight altitude of migrating waterbirds in Western Estonia. Ornis Fenn 89:241–253

    Google Scholar 

  • Kelly JF, Ryan Shipley J, Chilson PB, Howard KW, Frick WF, Kunz TH (2012) Quantifying animal phenology in the aerosphere at a continental scale using NEXRAD weather radars. Ecosphere 3(2):art16

    Article  Google Scholar 

  • Kemp MU, Shamoun-Baranes J, Dokter AM, van Loon E, Bouten W (2013) The influence of weather on the flight altitude of nocturnal migrants in mid-latitudes. Ibis 155:734–749

    Article  Google Scholar 

  • Kerlinger P, Moore FR (1989) Atmospheric structure and avian migration. In: Power DM (ed) Current ornithology. Plenum Press, New York, pp 109–142

    Chapter  Google Scholar 

  • Klaassen M (1995) Water and energy limitations on flight range. Auk 112:260–262

    Article  Google Scholar 

  • Koleček J, Procházka P, El-Arabany N, Tarka M, Ilieva M, Hahn S, Honza M, de la Puente J, Bermejo A, Gürsoy A, BenschS, Zehtindjiev P, Hasselquist D, Hansson B (2016) Cross-continental migratory connectivity and spatiotemporal migratory patterns in the great reed warbler. J Avian Biol. https://doi.org/10.1111/jav/00929

  • Kopp M, Peter HU, Mustafa O, Lisovski S, Ritz MS, Phillips RA, Hahn S (2011) South polar skuas from a single breeding population overwinter in different oceans though show similar migration patterns. Mar Ecol Prog Ser 435:263–267

    Article  Google Scholar 

  • Kranstauber B, Weinzierl R, Wikelski M, Safi K (2015) Global aerial flyways allow efficient travelling. Ecol Lett 18:1338–1345

    Article  CAS  PubMed  Google Scholar 

  • Krauel JJ, McCracken GF (2013) Recent advances in bat migration research. In: Adams RA, Pedersen SC (eds) Bat ecology, evolution, and conservation. Springer, New York, pp 293–314

    Chapter  Google Scholar 

  • Krauel JJ, Westbrook JK, McCracken GF (2015) Weather-driven dynamics in a dual-migrant system: moths and bats. J Anim Ecol 84:604–614

    Article  PubMed  Google Scholar 

  • Kreithen ML, Keeton WT (1974) Detection of atmospheric pressure by the homing pigeon, Columba liviia. J Comp Physiol 89:73–82

    Article  Google Scholar 

  • Landys MM, Piersma T, Visser GH, Jukema J, Wijker A (2000) Water balance during real and simulated long-distance migratory flight in the bar-tailed godwit. Condor 102:645–652

    Article  Google Scholar 

  • Lehnert LS, Kramer-Schadt S, Schönborn S, Lindecke O, Niermann I, Voigt CC (2014) Wind farm facilities in Germany kill noctule bats from near and far. PLoS One 9:e103106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liechti F (2006) Birds: blowin’ by the wind? J Ornithol 147:202–211

    Article  Google Scholar 

  • Liechti F, Schaller E (1999) The use of low-level jets by migrating birds. Naturwissenschaften 86:549–551

    Article  CAS  PubMed  Google Scholar 

  • Liechti F, Klaassen M, Bruderer B (2000) Predicting migratory flight altitudes by physiological migration models. Auk 117:205–214

    Article  Google Scholar 

  • Liechti F, Witvliet W, Weber R, Bächler E (2013) First evidence of a 200-day non-stop flight in a bird. Nat Commun 4:2554

    Article  PubMed  CAS  Google Scholar 

  • Liechti F, Scandolara C, Rubolini D, Ambrosini R, Korner-Nievergelt F, Hahn S, Lardelli R, Romano M, Caprioli M, Romano A, Sicurella B, Saino N (2015) Timing of migration and residence areas during the non-breeding period of barn swallows Hirundo rustica in relation to sex and population. J Avian Biol 46:254–265

    Article  Google Scholar 

  • Maina JN (2000) What it takes to fly: the structural and functional respiratory refinements in birds and bats. J Exp Biol 203:3045–3064

    CAS  PubMed  Google Scholar 

  • Mateos-Rodriguez M, Liechti F (2012) How do diurnal long-distance migrants select flight altitude in relation to wind? Behav Ecol 23:403–409

    Article  Google Scholar 

  • McCracken GF, Gillam EH, Westbrook JK, Lee Y-F, Jensen ML, Balsley BB (2008) Brazilian free-tailed bats (Tadarida brasiliensis: Molossidae, Chiroptera) at high altitude: links to migratory insect populations. Integr Comp Biol 48:107–118

    Article  PubMed  Google Scholar 

  • McCracken GF, Safi K, Kunz TH, Dechmann DKN, Swartz SM, Wikelski M (2016) Airplane tracking documents the fastest flight speeds recorded for bats. R Soc Open Sci 3(11):160398

    Article  PubMed  PubMed Central  Google Scholar 

  • McGuire LP, Guglielmo CG (2009) What can birds tell us about the migration physiology of bats? J Mammal 90:1290–1297

    Article  Google Scholar 

  • McGuire LP, Ratcliffe JM (2011) Light enough to travel: migratory bats have smaller brains, but not larger hippocampi, than sedentary species. Biol Lett 7:233–236

    Article  PubMed  Google Scholar 

  • McGuire LP, Guglielmo CG, Mackenzie SA, Taylor PD (2012) Migratory stopover in the long-distance migrant silver-haired bat, Lasionycteris noctivagans. J Anim Ecol 81:377–385

    Article  PubMed  Google Scholar 

  • McGuire LP, Fenton MB, Guglielmo CG (2013a) Phenotypic flexibility in migrating bats: seasonal variation in body composition, organ sizes and fatty acid profiles. J Exp Biol 216:800–808

    Article  CAS  PubMed  Google Scholar 

  • McGuire LP, Fenton MB, Guglielmo CG (2013b) Seasonal upregulation of catabolic enzymes and fatty acid transporters in the flight muscle of migrating hoary bats, Lasiurus cinereus. Comp Biochem Physiol B 165:138–143

    Article  CAS  PubMed  Google Scholar 

  • McGuire LP, Jonasson KA, Guglielmo CG (2014) Bats on a budget: torpor-assisted migration saves time and energy. PLoS One 9:e115724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLaren JD, Shamoun-Baranes J, Bouten W (2012) Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines. Behav Ecol 23:1089–1101

    Article  PubMed  PubMed Central  Google Scholar 

  • McLaren JD, Shamoun-Baranes J, Camphuysen CJ, Bouten W (2016) Directed flight and optimal airspeeds: homeward-bound gulls react flexibly to wind yet fly slower than predicted. J Avian Biol. https://doi.org/10.1111/jav.00828

  • McWilliams SR, Karasov WH (2005) Migration takes guts – digestive physiology of migratory birds and its ecological significance. In: Greenberg R, Marra PP (eds) Birds of two worlds – the ecology and evolution of migration. Johns Hopkins University Press, Baltimore, pp 67–78

    Google Scholar 

  • Mitchell GW, Woodworth BK, Taylor PD, Norris DR (2015) Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird. Mov Ecol 3:1–13

    Article  Google Scholar 

  • Newton I (2007) Weather-related mass-mortality events in migrants. Ibis 149:453–467

    Article  Google Scholar 

  • Newton I (2010) Bird migration. Harper Collins, London

    Google Scholar 

  • Nourani E, Yamaguchi NM, Manda A, Higuchi H (2016) Wind conditions facilitate the seasonal water-crossing behaviour of Oriental Honey-buzzards Pernis ptilorhynchus over the East China Sea. Ibis 158:506–518

    Article  Google Scholar 

  • O’Neill P (2013) Magnetoreception and baroreception in birds. Dev Growth Differ 55:188–197

    Article  PubMed  Google Scholar 

  • O’Shea TJ, Bogan MA, Ellison LE (2003) Monitoring trends in bat populations of the United States and territories: status of the science and recommendations for the future. Wildlife Soc B 31:16–29

    Google Scholar 

  • Paige KN (1995) Bats and barometric pressure: conserving limited energy and tracking insects from the roost. Funct Ecol 9:463–467

    Article  Google Scholar 

  • Parsons JG, Blair D, Luly J, Robson SKA (2008) Flying-fox (Megachiroptera: Pteropodidae) flight altitudes determined via an unusual sampling method: aircraft strikes in Australia. Acta Chiropterol 10:377–379

    Article  Google Scholar 

  • Pennycuick CJ, Åkesson S, Hedenström A (2013) Air speeds of migrating birds observed by ornithodolite and compared with predictions from flight theory. J R Soc Interface 10:20130419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pētersons G (2004) Seasonal migrations of north-eastern populations of Nathusius’ bat Pipistrellus nathusii (Chiroptera). Myotis 41–42:29–56

    Google Scholar 

  • Pettit JL, O’Keefe JM (2017) Day of year, temperature, wind, and precipitation predict timing of bat migration. J Mammal 98(5):1236–1248

    Google Scholar 

  • Piersma T, Gill RE Jr (1998) Guts don’t fly: small digestive organs in obese bar-tailed godwits. Auk 115:196–203

    Article  Google Scholar 

  • Portugal SJ, Green JA, White CR, Giullemette M, Butler PJ (2012) Wild geese do not increase flight behaviour prior to migration. Biol Lett 8:469–472

    Article  PubMed  Google Scholar 

  • Richardson WJ (1990) Timing of bird migration in relation to weather: updated review. In: Gwinner E (ed) Bird migration. Springer, Berlin, pp 78–101

    Chapter  Google Scholar 

  • Richter HV, Cumming GS (2006) Food availability and annual migration of the straw-colored fruit bat (Eidolon helvum). J Zool 268:35–44

    Article  Google Scholar 

  • Rydell J, Bach L, Bach P, Diaz LG, Furmankiewicz J, Hagner-Wahlsten N, Kyheröinen E-M, Lilley T, Masing M, Meyer MM, Pētersons G, Šuba J, Vasko V, Vintulis V, Hedenström A (2014) Phenology of migratory bat activity across the Baltic Sea and south-eastern North Sea. Acta Chiropterol 16:139–147

    Article  Google Scholar 

  • Safi K, Kranstauber B, Weinzierl R, Griffin L, Rees EC, Cabot D, Cruz S, Proaño C, Takekawa JY, Newman SH, Waldenström J, Bengtsson D, Kays R, Wikelski M, Bohrer G (2013) Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight. Mov Ecol 1:1–13

    Article  Google Scholar 

  • Sapir N, Horvitz N, Dechmann DKN, Fahr J, Wikelski M (2014) Commuting fruit bats beneficially modulate their flight in relation to wind. Proc R Soc B 281:20140018

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaub M, Liechti F, Jenni L (2004) Departure of migrating European robins, Erithacus rubecula, from a stopover site in relation to wind and rain. Anim Behav 67:229–237

    Article  Google Scholar 

  • Schmaljohann H, Naef-Daenzer B (2011) Body condition and wind support initiate the shift of migratory direction and timing of nocturnal departure in a songbird. J Anim Ecol 80:1115–1122

    Article  PubMed  Google Scholar 

  • Schmaljohann H, Liechti F, Bruderer B (2009) Trans-Sahara migrants select flight altitudes to minimize energy costs rather than water loss. Behav Ecol Sociobiol 63:1609–1619

    Article  Google Scholar 

  • Schmaljohann H, Becker PJJ, Karaardic H, Liechti F, Naef-Daenzer B, Grandío JM (2010) Nocturnal exploratory flights, departure time, and direction in a migratory songbird. J Ornithol 152:439–452

    Article  Google Scholar 

  • Shamoun-Baranes J, Leyrer J, van Loon E, Bocher P, Robin F, Meunier F, Piersma T (2010) Stochastic atmospheric assistance and the use of emergency staging sites by migrants. Proc R Soc B 277:1505–1511

    Article  PubMed  PubMed Central  Google Scholar 

  • Shamoun-Baranes J, Liechti F, Vansteelant WMG (2017) Atmospheric conditions create freeways, detours and tailbacks for migrating birds. J Comp Physiol A 203(6–7):509–529

    Article  CAS  Google Scholar 

  • Sillett TS, Holmes RT (2002) Variation in survivorship of a migratory songbird throughout its annual cycle. J Anim Ecol 71:296–308

    Article  Google Scholar 

  • Sjöberg S, Alerstam T, Åkesson S, Schulz A, Weidauer A, Coppack T, Muheim R (2015) Weather and fuel reserves determine departure and flight decisions in passerines migrating across the Baltic Sea. Anim Behav 104:59–68

    Article  Google Scholar 

  • Smith NG (1980) Hawk and vulture migrations in the Neotropics. In: Keast A, Morton ES (eds) Migrant birds in the Neotropics. Smithsonian Institution Press, Washington, pp 51–65

    Google Scholar 

  • Sterbing-D’Angelo S, Chadha M, Chiu C, Falk B, Xian W, Barcelo J, Zook JM, Moss CF (2011) Bat wing sensors support flight control. Proc Natl Acad Sci USA 108:11291–11296

    Article  PubMed  PubMed Central  Google Scholar 

  • Suter E (1957) Radar Beobachtungen über den Verlauf des nächtlichen Vogelzuges. Rev Suisse Zool 64:294–303

    Article  Google Scholar 

  • Taylor PD, Crewe TL, Mackenzie SA, Lepage D, Aubry Y, Crysler Z, Finney G, Francis CM, Guglielmo CG, Hamilton DJ, Holberton RL, Loring PH, Mitchell GW, Ryan Norris D, Paquet J, Ronconi RA, Smetzer JR, Smith PA, Welch LJ, Woodworth BK (2017) The Motus Wildlife Tracking System: a collaborative research network to enhance the understanding of wildlife movement. Avian Conservation and Ecology 12(1):8

    Article  Google Scholar 

  • Torre-Bueno JR (1978) Evaporative cooling and evaporative water loss in the flying birds. J Exp Biol 75:231–236

    CAS  PubMed  Google Scholar 

  • Tøttrup AP, Pedersen L, Onrubia A, Klaassen RHG, Thorup K (2017) Migration of red-backed shrikes from the Iberian Peninsula: optimal or sub-optimal detour? J Avian Biol 48(1):149–154

    Article  Google Scholar 

  • Tøttrup AP, Thorup K, Rainio K, Yosef R, Lehikoinen E, Rahbek C (2008) Avian migrants adjust migration in response to environmental conditions en roue. Biol Lett 4:685–688

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Gelder RG, Wingate DB (1961) The taxonomy and status of bats in Bermuda. Am Mus Novit 2029:1–9

    Google Scholar 

  • Vansteelant WMG, Shamoun-Baranes J, McLaren J, van Diermen J, Bouten W (2017) Soaring across continents: decision-making of a soaring migrant under changing atmospheric conditions along an entire flyway. J Avian Biol 48(6):887–896

    Article  Google Scholar 

  • Vitali G (1911) Di un interessante deivato della prima fessura branchiale nel passero. Anat Anz 39:219–224

    Google Scholar 

  • Voigt CC, Schneeberger K, Voigt-Heucke SL, Lewanzik D (2011) Rain increases the energy cost of bat flight. Biol Lett 7:793–795

    Article  PubMed  PubMed Central  Google Scholar 

  • von Bartheld CS, Giannessi F (2011) The paratympanic organ: a barometer and altimeter in the middle ear of birds? J Exp Zool 316B:402–408

    Article  Google Scholar 

  • Weber TP, Hedenström A (2000) Optimal stopover decisions under wind influence: the effects of correlated winds. J Theor Biol 205:95–104

    Article  CAS  PubMed  Google Scholar 

  • Weimerskirch H, Bishop C, Jeanniard-du-Dot T, Prudor A, Sachs G (2016) Frigate birds track atmospheric conditions over months-long transoceanic flights. Science 353:74–78

    Article  CAS  PubMed  Google Scholar 

  • Wikelski M, Tarlow EM, Raim A, Diehl RH, Larkin RP, Visser GH (2003) Costs of migration in free-flying songbirds. Nature 423:704

    Article  CAS  PubMed  Google Scholar 

  • Williams TC, Williams JM, Ireland LC, Teal JM (1977) Autumnal bird migration over the western North Atlantic Ocean. Am Birds 31:251–267

    Google Scholar 

  • Williams TC, Ireland LC, Williams JM (1973) High altitude flights of the free-tailed bat, Tadarida brasiliensis, Observed with Radar. J Mammal 54(4):807–821

    Article  Google Scholar 

  • Wright PA (1995) Nitrogen excretion: three end products, many physiological roles. J Exp Biol 198:273–281

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Chilson for the initiative to compile this book, and J. Kelly and W. Frick for revising our manuscript. We are also grateful for the many insightful and stimulating conversations with colleagues and collaborators that have contributed to the ideas for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Liechti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liechti, F., McGuire, L.P. (2017). Facing the Wind: The Aeroecology of Vertebrate Migrants. In: Chilson, P., Frick, W., Kelly, J., Liechti, F. (eds) Aeroecology. Springer, Cham. https://doi.org/10.1007/978-3-319-68576-2_8

Download citation

Publish with us

Policies and ethics