Skip to main content

Properties of the Atmosphere in Assisting and Hindering Animal Navigation

  • Chapter
  • First Online:
Aeroecology

Abstract

Airborne birds, bats, and insects carry out some of the animal world’s most spectacular migrations, migrations often supported by complex behavioral-navigational mechanisms. As aerial navigators, these animals must confront potentially disastrous wind conditions that can carry them far from their migratory route. But the same aerial migrators, as well as aerial residents, can also extract spatial information from the atmosphere to support navigation or just locating a goal across a range of spatial scales. The goal of our chapter is to first highlight some of the physical challenges associated with extracting navigational, principally olfactory, information from the air. We then go on to look at the complex role wind plays as a factor influencing navigation in the air and the documented occurrence of both short- and long-distance navigation and goal localization reliant on atmospheric chemicals/odors. The new field of aeroecology offers an exciting opportunity to revisit some of the classic questions examining the relationship among airborne migrations, wind, wind drift, and the need to carry out corrective reorientations, as well as opening up new investigations into the relationship between the properties of atmospheric stimuli and their potential use in supporting navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Able KP (1974) Environmental influences on the orientation of free-flying nocturnal bird migrants. Anim Behav 22(1):224–238

    Article  Google Scholar 

  • Able KP (1980) Mechanisms of orientation, navigation and homing. In: Gauthreaux S (ed) Animal migration, orientation and navigation. Academic, New York, pp 283–373

    Chapter  Google Scholar 

  • Able KP (1982) Field studies of avian nocturnal migratory orientation I. Interaction of sun, wind and stars as directional cues. Anim Behav 30(3):761–767

    Article  Google Scholar 

  • Able KP (2001) The concepts and terminology of bird navigation. J Avian Biol 32(2):174–183

    Article  Google Scholar 

  • Able KP, Bingman VP, Kerlinger P, Gergits W (1982) Field studies of avian nocturnal migratory orientation II. Experimental manipulation of orientation in white-throated sparrows (Zonotrichia albicollis) released aloft. Anim Behav 30(3):768–773

    Article  Google Scholar 

  • Åkesson S, Walinder G, Karlsson L, Ehnbom S (2002) Nocturnal migratory flight initiation in reed warblers Acrocephalus scirpaceus: effect of wind on orientation and timing of migration. J Avian Biol 33(4):349–357

    Article  Google Scholar 

  • Alerstam T (1976) Do birds use waves for orientation when migrating across the sea? Nature 259:205–207

    Article  Google Scholar 

  • Alerstam T (1979) Optimal use of wind by migrating birds: combined drift and overcompensation. J Theor Biol 79(3):341–353

    Article  CAS  PubMed  Google Scholar 

  • Alerstam T (2011) Optimal bird migration revisited. J Ornithol 152(1):5–23

    Article  Google Scholar 

  • Alerstam T, Lindström Å (1990) Optimal bird migration: the relative importance of time, energy, and safety. In: Gwinner E (ed) Bird migration. Springer, Berlin, pp 331–351

    Chapter  Google Scholar 

  • Alerstam T, Chapman JW, Bäckman J, Smith AD, Karlsson H, Nilsson C, Reynolds DR, Klaassen RHG, Hill JK (2011) Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds. Proc R Soc B Biol Sci 282(1804):rspb20110058

    Google Scholar 

  • Allison AC (1953) The morphology of the olfactory system in the vertebrates. Biol Rev 28(2):195–244

    Article  Google Scholar 

  • Anderson H (1985) The distribution of mechanosensory hair afferents within the locust central nervous system. Brain Res 333(1):97–102

    Article  CAS  PubMed  Google Scholar 

  • Aralimarad P, Reynolds AM, Lim KS, Reynolds DR, Chapman JW (2011) Flight altitude selection increases orientation performance in high-flying nocturnal insect migrants. Anim Behav 82(6):1221–1225

    Article  Google Scholar 

  • Atoji Y, Wild JM (2014) Efferent and afferent connections of the olfactory bulb and prepiriform cortex in the pigeon (Columba livia). J Comp Neurol 522(8):1728–1752

    Article  PubMed  Google Scholar 

  • Bang BG, Cobb S (1968) The size of the olfactory bulb in 108 species of birds. Auk 85(1):55–61

    Article  Google Scholar 

  • Benvenuti S, Wallraff HG (1985) Pigeon navigation: site simulation by means of atmospheric odours. J Comp Physiol A 156(6):737–746

    Article  Google Scholar 

  • Bingman VP (1980) Inland morning flight behavior of nocturnal passerine migrants in eastern New York. Auk 97(3):465–472

    Google Scholar 

  • Bingman VP, Cheng K (2005) Mechanisms of animal global navigation: comparative perspectives and enduring challenges. Ethol Ecol Evol 17(4):295–318

    Article  Google Scholar 

  • Bingman VP, Able KP, Kerlinger P (1982) Wind drift, compensation, and the use of landmarks by nocturnal bird migrants. Anim Behav 30(1):49–53

    Article  Google Scholar 

  • Blakemore R (1975) Magnetotactic bacteria. Science 190(4212):377–379

    Article  CAS  PubMed  Google Scholar 

  • Brower L (1996) Monarch butterfly orientation: missing pieces of a magnificent puzzle. J Exp Biol 199(1):93–103

    CAS  PubMed  Google Scholar 

  • Bruderer B (1997) The study of bird migration by radar part 2: major achievements. Naturwissenschaften 84(2):45–54

    Article  CAS  Google Scholar 

  • Campbell SA, Borden JH (2006) Close-range in-flight integration of olfactory and visual information by a host-seeking bark beetle. Entomol Exp Appl 120(2):91–98

    Article  Google Scholar 

  • Chapman JW, Reynolds DR, Mouritsen H, Hill JK, Riley JR, Sivell D, Smith AD, Woiwod IP (2008) Wind selection and drift compensation optimize migratory pathways in a high-flying moth. Curr Biol 18(7):514–518

    Article  CAS  PubMed  Google Scholar 

  • Chapman JW, Nesbit RL, Burgin LE, Reynolds DR, Smith AD, Middleton DR, Hill JK (2010) Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science 327(5966):682–685

    Article  CAS  PubMed  Google Scholar 

  • Chapman JW, Reynolds DR, Wilson K (2015) Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol Lett 18(3):287–302

    Article  PubMed  Google Scholar 

  • Combes SA, Dudley R (2009) Turbulence-driven instabilities limit insect flight performance. Proc Natl Acad Sci 106(22):9105–9108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craven BA, Neuberger T, Paterson EG, Webb AG, Josephson EM, Morrison EE, Settles GS (2007) Reconstruction and morphometric analysis of the nasal airway of the dog (Canis familiaris) and implications regarding olfactory airflow. Anat Rec 290(11):1325–1340

    Article  Google Scholar 

  • Craven BA, Paterson EG, Settles GS (2010) The fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmia. J R Soc Interface 7(47):933–943

    Article  PubMed  Google Scholar 

  • Crimaldi JP, Wiley MB, Koseff JR (2002) The relationship between mean and instantaneous structure in turbulent passive scalar plumes. J Turbul 3(14):1–24

    Google Scholar 

  • DeBose JL, Nevitt GA (2008) The use of odors at different spatial scales: comparing birds with fish. J Chem Ecol 34(7):867–881

    Article  CAS  PubMed  Google Scholar 

  • Dell’Ariccia G, Bonadonna F (2013) Back home at night or out until morning? Nycthemeral variations in homing of anosmic Cory’s shearwaters in a diurnal colony. J Exp Biol 216(8):1430–1433

    Article  PubMed  Google Scholar 

  • Dokter AM, Shamoun-Baranes J, Kemp MU, Tijm S, Holleman I (2013) High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance. PLoS One 8(1):e52300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley R (2002) The biomechanics of insect flight: form, function, evolution. Princeton University Press, Princeton

    Google Scholar 

  • Dusenbery DB (1992) Sensory ecology: how organisms acquire and respond to information. WH Freeman, New York

    Google Scholar 

  • Eikenaar C, Schmaljohann H (2015) Wind conditions experienced during the day predict nocturnal restlessness in a migratory songbird. Ibis 157(1):125–132

    Article  Google Scholar 

  • Emlen ST (1967) Migratory orientation in the Indigo Bunting, Passerina cyanea: part I: evidence for use of celestial cues. Auk 84(3):309–342

    Article  Google Scholar 

  • Erni B, Liechti F, Bruderer B (2005) The role of wind in passerine autumn migration between Europe and Africa. Behav Ecol 16(4):732–740

    Article  Google Scholar 

  • Gagliardo A (2013) Forty years of olfactory navigation in birds. J Exp Biol 216(12):2165–2171

    Article  PubMed  Google Scholar 

  • Gagliardo A, Ioale P, Savini M, Dell’Omo G, Bingman VP (2009) Hippocampal-dependent familiar area map supports corrective re-orientation following navigational error during pigeon homing: a GPS-tracking study. Eur J Neurosci 29(12):2389–2400

    Article  PubMed  Google Scholar 

  • Gagliardo A, Bried J, Lambardi P, Luschi P, Wikelski M, Bonadonna F (2013) Oceanic navigation in Cory’s shearwaters: evidence for a crucial role of olfactory cues for homing after displacement. J Exp Biol 216(15):2798–2805

    Article  PubMed  Google Scholar 

  • Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, Cambridge

    Google Scholar 

  • Gauthreaux SA (1978) Importance of the daytime flights of nocturnal migrants: redetermined migration following displacement. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation, and homing. Springer, Berlin, pp 219–227

    Chapter  Google Scholar 

  • Gauthreaux SA, Able KP (1970) Wind and the direction of nocturnal songbird migration. Nature 228:476–477

    Article  CAS  PubMed  Google Scholar 

  • Gibo DL, Pallett MJ (1979) Soaring flight of monarch butterflies, Danaus plexippus (Lepidoptera: Danaidae), during the late summer migration in southern Ontario. Can J Zool 57(7):1393–1401

    Article  Google Scholar 

  • Gnatzy W, Tautz J (1980) Ultrastructure and mechanical properties of an insect mechanoreceptor: stimulus-transmitting structures and sensory apparatus of the cereal filiform hairs of Gryllus. Cell Tissue Res 213(3):441–463

    CAS  PubMed  Google Scholar 

  • Gomez G, Atema J (1996) Temporal resolution in olfaction: stimulus integration time of lobster chemoreceptor cells. J Exp Biol 199(8):1771–1779

    CAS  PubMed  Google Scholar 

  • Greenewalt CH (1975) The flight of birds: the significant dimensions, their departure from the requirements for dimensional similarity, and the effect on flight aerodynamics of that departure. Trans Am Philos Soc 65(4):1–67

    Article  Google Scholar 

  • Griffin DR (1952) Bird navigation. Biol Rev 27(4):359–390

    Article  Google Scholar 

  • Grubb TC (1974) Olfactory navigation to the nesting burrow in Leach’s petrel (Oceanodroma leucorrhoa). Anim Behav 22(1):192–202

    Article  PubMed  Google Scholar 

  • Guerra PA, Reppert SM (2015) Sensory basis of lepidopteran migration: focus on the monarch butterfly. Curr Opin Neurobiol 34:20–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilford T, Åkesson S, Gagliardo A, Holland RA, Mouritsen H, Muheim R, Wiltschko R, Wiltschko W, Bingman VP (2011) Migratory navigation in birds: new opportunities in an era of fast-developing tracking technology. J Exp Biol 214(22):3705–3712

    Article  PubMed  Google Scholar 

  • Hein CM, Zapka M, Mouritsen H (2011) Weather significantly influences the migratory behaviour of night-migratory songbirds tested indoors in orientation cages. J Ornithol 152(1):27–35

    Article  Google Scholar 

  • Henry M, Thomas DW, Vaudry R, Carrier M (2002) Foraging distances and home range of pregnant and lactating little brown bats (Myotis lucifugus). J Mammal 83(3):767–774

    Article  Google Scholar 

  • Hershberger WA, Jordan JS (1998) The phantom array: a perisaccadic illusion of visual direction. Psychol Rec 48(1):21–32

    Google Scholar 

  • Ioalé P, Papi F, Fiaschi V, Baldaccini NE (1978) Pigeon navigation: effects upon homing behaviour by reversing wind direction at the loft. J Comp Physiol 128(4):285–295

    Article  Google Scholar 

  • Ioalè P, Nozzolini M, Papi F (1990) Homing pigeons do extract directional information from olfactory stimuli. Behav Ecol Sociobiol 26(5):301–305

    Article  Google Scholar 

  • Kerlinger P (1989) Flight strategies of migrating hawks. University of Chicago Press, Chicago

    Google Scholar 

  • Kerlinger P, Bingman VP, Able KP (1985) Comparative flight behaviour of migrating hawks studied with tracking radar during autumn in central New York. Can J Zool 63(4):755–761

    Article  Google Scholar 

  • Kishkinev D, Chernetsov N, Heyers D, Mouritsen H (2013) Migratory reed warblers need intact trigeminal nerves to correct for a 1000 km eastward displacement. PLoS One 8(6):e65847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumagai T, Shimozawa T, Baba Y (1998) Mobilities of the cercal wind-receptor hairs of the cricket, Gryllus bimaculatus. J Comp Physiol A 183(1):7–21

    Article  Google Scholar 

  • Liechti F, Bruderer B (1998) The relevance of wind for optimal migration theory. J Avian Biol 29:561–568

    Article  Google Scholar 

  • Masson C, Mustaparta H (1990) Chemical information processing in the olfactory system of insects. Physiol Rev 70(1):199–245

    Article  CAS  Google Scholar 

  • Matsumoto SG, Hildebrand JG (1981) Olfactory mechanisms in the moth Manduca sexta: response characteristics and morphology of central neurons in the antennal lobes. Proc R Soc Lond B Biol Sci 213(1192):249–277

    Article  CAS  Google Scholar 

  • McKeegan DE (2002) Spontaneous and odour evoked activity in single avian olfactory bulb neurones. Brain Res 929(1):48–58

    Article  CAS  PubMed  Google Scholar 

  • Metcalfe J, Schmidt KL, Kerr WB, Guglielmo CG, MacDougall-Shackleton SA (2013) White-throated sparrows adjust behaviour in response to manipulations of barometric pressure and temperature. Anim Behav 86(6):1285–1290

    Article  Google Scholar 

  • Moore P, Crimaldi J (2004) Odor landscapes and animal behavior: tracking odor plumes in different physical worlds. J Mar Syst 49(1):55–64

    Article  Google Scholar 

  • Mouritsen H, Frost BJ (2002) Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms. Proc Natl Acad Sci 99(15):10162–10166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouritsen H, Derbyshire R, Stalleicken J, Mouritsen OØ, Frost BJ, Norris DR (2013) An experimental displacement and over 50 years of tag-recoveries show that monarch butterflies are not true navigators. Proc Natl Acad Sci 110(18):7348–7353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murlis J, Elkinton JS, Carde RT (1992) Odor plumes and how insects use them. Annu Rev Entomol 37(1):505–532

    Article  Google Scholar 

  • Nevitt GA, Veit RR, Kareiva P (1995) Dimethyl sulphide as a foraging cue for Antarctic procellariiform seabirds. Nature 376(6542):680–682

    Article  CAS  Google Scholar 

  • Nevitt GA, Losekoot M, Weimerskirch H (2008) Evidence for olfactory search in wandering albatross, Diomedea exulans. Proc Natl Acad Sci 105(12):4576–4581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newland PL, Rogers SM, Gaaboub I, Matheson T (2000) Parallel somatotopic maps of gustatory and mechanosensory neurons in the central nervous system of an insect. J Comp Neurol 425(1):82–96

    Article  CAS  PubMed  Google Scholar 

  • Nisbet ICT (1955) Atmospheric turbulence and bird flight. Br Birds 48:557–559

    Google Scholar 

  • Nisbet IC (1970) Autumn migration of the Blackpoll Warbler: evidence for long flight provided by regional survey. Bird-Banding 41(3):207–240

    Article  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon Press, Oxford

    Google Scholar 

  • Papi F, Ioalé P, Fiaschi V, Benvenuti S, Baldaccini NE (1974) Olfactory navigation of pigeons: the effect of treatment with odorous air currents. J Comp Physiol A 94(3):187–193

    Article  Google Scholar 

  • Patzke N, Manns M, Güntürkün O, Ioale P, Gagliardo A (2010) Navigation-induced ZENK expression in the olfactory system of pigeons (Columba livia). Eur J Neurosci 31(11):2062–2072

    Article  PubMed  Google Scholar 

  • Reynolds AM, Reynolds DR (2009) Aphid aerial density profiles are consistent with turbulent advection amplifying flight behaviours: abandoning the epithet ‘passive. Proc R Soc B Biol Sci 276(1654):137–143

    Article  Google Scholar 

  • Reynolds AM, Reynolds DR, Riley JR (2009) Does a ‘turbophoretic’effect account for layer concentrations of insects migrating in the stable night-time atmosphere? J R Soc Interface 6(30):87–95

    Article  CAS  PubMed  Google Scholar 

  • Richardson WJ (1990) Wind and orientation of migrating birds: a review. Experientia 46(4):416–425

    Article  Google Scholar 

  • Riley JR, Reynolds DR, Smith AD, Edwards AS, Osborne JL, Williams IH, McCartney HA (1999) Compensation for wind drift by bumble-bees. Nature 400(6740):126

    Article  CAS  Google Scholar 

  • Rumbo ER, Kaissling KE (1989) Temporal resolution of odour pulses by three types of pheromone receptor cells in Antheraea polyphemus. J Comp Physiol A 165(3):281–291

    Article  Google Scholar 

  • Sachs G, Traugott J, Nesterova AP, Bonadonna F (2013) Experimental verification of dynamic soaring in albatrosses. J Exp Biol 216(22):4222–4232

    Article  CAS  PubMed  Google Scholar 

  • Sapir N, Horvitz N, Dechmann DK, Fahr J, Wikelski M (2014) Commuting fruit bats beneficially modulate their flight in relation to wind. Proc R Soc B Biol Sci 281(1782):20140018

    Article  Google Scholar 

  • Schmidt-Koenig K (1958) Experimentelle Einflußnahme auf die 24-Stunden-Periodik bei Brieftauben und deren Auswirkungen unter besonderer Berücksichtigung des Heimfindevermögens. Z Tierpsychol 15(3):301–331

    Article  Google Scholar 

  • Schneider D (1964) Insect antennae. Annu Rev Entomol 9(1):103–122

    Article  Google Scholar 

  • Shöne H (1984) Spatial orientation: the spatial control of behavior in animals and man. Princeton University Press, Princeton

    Google Scholar 

  • Srygley RB (2001) Compensation for fluctuations in crosswind drift without stationary landmarks in butterflies migrating over seas. Anim Behav 61(1):191–203

    Article  PubMed  Google Scholar 

  • Srygley RB (2003) Wind drift compensation in migrating dragonflies Pantala (Odonata: Libellulidae). J Insect Behav 16(2):217–232

    Article  Google Scholar 

  • Stefanescu C, Alarcon M, AVila A (2007) Migration of the painted lady butterfly, Vanessa cardui, to north-eastern Spain is aided by African wind currents. J Anim Ecol 76(5):888–898

    Article  PubMed  Google Scholar 

  • Steiger SS, Fidler AE, Valcu M, Kempenaers B (2008) Avian olfactory receptor gene repertoires: evidence for a well-developed sense of smell in birds? Proc R Soc B Biol Sci 275(1649):2309–2317

    Article  CAS  Google Scholar 

  • Uchida N, Kepecs A, Mainen ZF (2006) Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision-making. Nat Rev Neurosci 7(6):485–491

    Article  CAS  PubMed  Google Scholar 

  • Van Doren BM, Sheldon D, Geevarghese J, Hochachka WM, Farnsworth A (2014) Autumn morning flights of migrant songbirds in the northeastern United States are linked to nocturnal migration and winds aloft. Auk 132(1):105–118

    Article  Google Scholar 

  • Vanrullen R, Thorpe SJ (2001) The time course of visual processing: from early perception to decision-making. J Cogn Neurosci 13(4):454–461

    Article  CAS  PubMed  Google Scholar 

  • Vickers NJ (2000) Mechanisms of animal navigation in odor plumes. Biol Bull 198(2):203–212

    Article  CAS  PubMed  Google Scholar 

  • Vogel S (1996) Life in moving fluids: the physical biology of flow. Princeton University Press, Princeton

    Google Scholar 

  • Wallraff HG (1966) Über die Heimfindeleistungen von Brieftauben nach Haltung in verschiedenartig abgeschirmten Volieren. Z Vgl Physiol 52(3):215–259

    Article  Google Scholar 

  • Wallraff HG (2004) Avian olfactory navigation: its empirical foundation and conceptual state. Anim Behav 67(2):189–204

    Article  Google Scholar 

  • Wallraff HG (2005) Avian navigation: pigeon homing as a paradigm. Springer, Berlin

    Google Scholar 

  • Wallraff HG (2013) Ratios among atmospheric trace gases together with winds imply exploitable information for bird navigation: a model elucidating experimental results. Biogeosciences 10(11):6929–6943

    Article  CAS  Google Scholar 

  • Wallraff HG, Andreae MO (2000) Spatial gradients in ratios of atmospheric trace gases: a study stimulated by experiments on bird navigation. Tellus B 52(4):1138–1157

    Article  Google Scholar 

  • Walther Y, Bingman VP (1984) Orientierungsverhalten von Trauerschnäppern (Ficedula hyoleuca) während des Frühjahrszuges in Abhängigkeit von Wetterfaktoren. Vogelwarte 32:201–205

    Google Scholar 

  • Wehner R (1987) ‘Matched filters’—neural models of the external world. J Comp Physiol A 161(4):511–531

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R (1972) Magnetic compass of European robins. Science 176:62–64

    Article  CAS  PubMed  Google Scholar 

  • Wiltschko R, Wiltschko W (2003) Avian navigation: from historical to modern concepts. Anim Behav 65(2):257–272

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verner P. Bingman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bingman, V.P., Moore, P. (2017). Properties of the Atmosphere in Assisting and Hindering Animal Navigation. In: Chilson, P., Frick, W., Kelly, J., Liechti, F. (eds) Aeroecology. Springer, Cham. https://doi.org/10.1007/978-3-319-68576-2_6

Download citation

Publish with us

Policies and ethics