Skip to main content
Book cover

Aeroecology pp 87–118Cite as

Physiological Aeroecology: Anatomical and Physiological Adaptations for Flight

  • Chapter
  • First Online:

Abstract

Flight has evolved independently in birds, bats, and insects and was present in the Mesozoic pterosaurians that have disappeared. Of the roughly one million living animal species, more than three-quarters are flying insects. Flying is an extremely successful way of locomotion. At first glance, this seems surprising because leaving the ground and moving in the air is energetically expensive. We will therefore start with the question: why do some animals spend a substantial proportion of their life in the air? To generate lift, a few key features are required, and yet, animals show incredible diversity in their flight mechanics. We will review constraints imposed by body size including anatomical adaptations of the skeleton, muscles, and organs necessary to stay airborne with a special focus on the wings. Ecology of the aerial organism, such as diet or migration, has diversified flight styles and the physiological adaptations required to optimize performance. For example, animals are exposed to low temperatures and low oxygen pressure at high altitude, whereas overheating can pose a problem at low altitudes. Moreover, aerial prey can be particularly apparent to aerial predators resulting in selection on flight speed and maneuverability of predators and prey. Flight is energetically costly, much more costly than walking, with the majority of the cost dictated by body mass. Hence, adding weight load to fuel flight also adds to the cost of flight. We review energy supply for flight, and special adaptations for long-term flights. Aeroecology has resulted in extraordinary visual and aural sensory systems of predators, which in coordination with the locomotor system are under strong selection to detect and intercept prey in flight.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alerstam T, Hedenström A, Akesson S (2003) Long-distance migration: evolution and determinants. Oikos 103:247–260

    Article  Google Scholar 

  • Alexander DE (2002) Nature’s flyers. John Hopkins University Press, Baltimore

    Google Scholar 

  • Altshuler DL, Dudley R (2003) Kinematics of hovering hummingbird flight along simulated and natural elevational gradients. J Exp Biol 206:3139–3147

    Article  PubMed  Google Scholar 

  • Altshuler DL, Dickson WB, Vance JT et al (2005) Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight. Proc Nati Acad Sci 102:18213–18218

    Article  CAS  Google Scholar 

  • Battley PF, Dekinga A, Dietz MW et al (2001) Basal metabolic rate declines during long-distance migratory flight in great knots. Condor 103:838–845

    Article  Google Scholar 

  • Bicudo JEPW, Buttemer WA, Chappell MA et al (2010) Ecological and environmental physiology of birds. Oxford University Press, New York

    Book  Google Scholar 

  • Biesel W, Nachtigall W (1987) Pigeon flight in a wind tunnel. IV Thermoregulation and water homeostasis. J Comp Physiol B 157:117–128

    Article  Google Scholar 

  • Birch JM, Dickinson MH (2003) The influence of wing-wake interactions on production of aerodynamic forces in flight. J Exp Biol 206:2257–2272

    Article  PubMed  Google Scholar 

  • Bishop CM, Spivey RJ, Hawkes LA et al (2015) Th roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations. Science 347:250–254

    Article  CAS  PubMed  Google Scholar 

  • Bomphrey RJ, Taylor GK, Thomas ALR (2009) Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair. Exp Fluids 46:811–821

    Article  Google Scholar 

  • Bridge ES, Thorup K, Bowlin MS, Chilson PB, Diehl RH, Fleron RW, Hartl P, Kays R, Kelly JF, Robinson WD, Wikelski M (2011) Technology on the move: recent and forthcoming innovations for tracking migratory birds. Bioscience 61:689–698

    Article  Google Scholar 

  • Butler PJ, Woakes AJ (2001) Seasonal hypothermia in a large migrant bird: saving energy for fat deposition? J Exp Biol 204:1361–1367

    CAS  PubMed  Google Scholar 

  • Butler PJ, Woakes AJ, Bishop CM (1998) Behaviour and physiology of Svalbard barnacle geese Branta leucopsis during their autumn migration. J Avian Biol 29:536–545

    Article  Google Scholar 

  • Carey C, Morton ML (1976) Aspects of circulatory physiology of montane and lowland birds. Comp Biochem Physiol 54A:61–74

    Article  Google Scholar 

  • Carmi N, Pinshow B, Porter WP et al (1992) Water and energy limitations on flight duration in small migrating birds. Auk 109(2):268–276

    Article  Google Scholar 

  • Chai P, Dudley R (1996) Limits to flight energetics of hummingbirds hovering in hypodense and hypoxic gas mixtures. J Exp Biol 199:2285–2295

    CAS  PubMed  Google Scholar 

  • Chai P, Srygley RB (1990) Predation and the flight, morphology, and temperature of Neotropical rainforest butterflies. Am Nat 135:48–765

    Article  Google Scholar 

  • Chapman JW, Reynolds DR, Mouritsen H et al (2008) Wind selection and drift compensation optimize migratory pathways in a high-flying moth. Curr Biol 18:514–518

    Article  CAS  PubMed  Google Scholar 

  • Chilson PB, Frick WF, Kelly JF, Howard KW, Larkin RP, Diehl RH, Westbrook JK, Kelly TA, Kunz TH (2012) Partly cloudy with a chance of migration: weather, radars, and aeroecology. Bull Am Meteorol Soc 93:669–686

    Article  Google Scholar 

  • Collett TS, Land MF (1978) How hoverflies compute interception courses. J Comp Physiol 125:191–204

    Article  Google Scholar 

  • Costantini D, Cardinale M, Carere C (2007) Oxidative damage and anti-oxidant capacity in two migratory bird species at a stop-over site. Comp Biochem Physiol C 144:363–371

    Google Scholar 

  • Crabtree B, Newsholme EA (1975) Comparative aspects of fuel utilization and metabolism by muscle. In: Usherwood PNR (ed) Insect muscle. Academic, New York, pp 405–491

    Google Scholar 

  • Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1956

    Article  CAS  PubMed  Google Scholar 

  • Dillon ME, Dudley R (2014) Surpassing Mt. Everest: extreme flight performance of alpine bumble-bees. Biol Lett 10:20130922

    Article  PubMed  PubMed Central  Google Scholar 

  • Dillon ME, Frazier MR (2006) Drosophila melanogaster locomotion in cold thin air. J Exp Biol 209:364–371

    Article  PubMed  Google Scholar 

  • Dohm GL (1986) Protein as a fuel for endurance exercise. Exerc Sport Sci Rev 14:143–173

    Article  CAS  PubMed  Google Scholar 

  • Dudley R (ed) (2000) The biomechanics of insect flight: form, function, evolution. Princeton University Press, Princeton

    Google Scholar 

  • Dudley R, Vermeij GJ (1992) Do the power requirements of flapping flight constrain folivory in flying animals? Funct Ecol 6:101–104

    Google Scholar 

  • Ellington CP (1984) Aerodynamics of flapping flight. Am Zool 24:95–105

    Article  Google Scholar 

  • Ellington CP, Van den Berg C, Willmott AP et al (1996) Leading-edge vortices in insect flight. Nature 384:626–630

    Article  CAS  Google Scholar 

  • Engel S, Biebach H, Visser GH (2006) Water and heat balance during flight in the rose-colored starling (Sturnus roseus). Physiol Biochem Zool 79:763–774

    Article  PubMed  Google Scholar 

  • Esch H (1988) The effects of temperature on flight muscle potentials in honeybees and cuculiinid winter moths. J Exp Biol 135:109–117

    Google Scholar 

  • Esterhuizen N, Clusella-Trullas S, van Daalen CE et al (2014) Effects of within-generation thermal history on the flight performance of Ceratitis capitata: colder is better. J Exp Biol 217:3545–3556

    Article  PubMed  Google Scholar 

  • Evans HE, Heiser JB (2004) What’s inside: anatomy and physiology. In: Podulka S, Rohrbaugh RW Jr, Bonney R (eds) Handbook of bird biology, 2nd edn. Cornell Lab of Ornithology, Ithaca (chapter 4)

    Google Scholar 

  • Falsone K, Jenni-Eiermann S, Jenni L (2009) Corticosterone in migrating songbirds during endurance flight. Horm Behav 56:548–556

    Article  CAS  PubMed  Google Scholar 

  • Gannes LZ, Hatch KA, Pinshow B (2001) How does time since feeding affect the fuels pigeons use during flight? Physiol Biochem Zool 74:1–10

    Article  CAS  PubMed  Google Scholar 

  • Gauthreaux SA Jr, Belser CG (1998) Display of bird movements on the WSR-88D: patterns and quantification. Weather Forecast 13:453–464

    Article  Google Scholar 

  • George JC, John TM (1993) Flight effects on certain blood parameters in homing pigeons (Columba livia). Comp Biochem Physiol 106A:707–712

    Article  CAS  Google Scholar 

  • George JC, John TM, Mitchell MA (1989) Flight effects on plasma levels of lipid, glucagon and thyroid hormones in homing pigeons. Horm Metab Res 21:542–545

    Article  CAS  PubMed  Google Scholar 

  • Gerson AR, Guglielmo CG (2010) House sparrows (Passer domesticus) increase protein catabolism in response to water restriction. Am J Regul Integr Comp Physiol 300:R925–R930

    Article  CAS  Google Scholar 

  • Gibo DL (1981) Altitudes attained by migrating monarch butterflies, Danaus p. plexippus (Lepidoptera: Danaidae), as reported by glider pilots. Can J Zool 59:571–572

    Article  Google Scholar 

  • Giladi I, Pinshow B (1999) Evaporative and excretory water loss during free flight in pigeons. J Comp Physiol B 169:311–318

    Article  Google Scholar 

  • Goldsworthy GJ, Joyce M (2001) Physiology and endocrine control of flight. In: Woiwod IP, Reynolds DR, Thomas CD (eds) Insect movement: mechanisms and consequences. CABI, Wallingford, pp 65–86

    Google Scholar 

  • Greenlee KJ, Harrison JF (2004) Development of respiratory function in the American locust Schistocerca Americana. I. Across-instar effects. J Exp Biol 207:497–508

    Article  PubMed  Google Scholar 

  • Guglielmo CG (2010) Move that fatty acid: fuel selection and transport in migratory birds and bats. Integr Comp Biol 50:336–345

    Article  PubMed  Google Scholar 

  • Guglielmo CG, Williams TD (2003) Phenotypic flexibility of body composition in relation to migratory stage, age, and sex in the Western sandpiper (Calidris mauri). Physiol Biochem Zool 76:84–98

    Article  PubMed  Google Scholar 

  • Guglielmo CG, Haunerland NH, Williams TD (1998) Fatty acid binding protein, a major protein in the flight muscle of the Western Sandpiper. Comp Biochem Physiol 119B:549–555

    Article  CAS  Google Scholar 

  • Guglielmo CG, Piersma T, Williams TD (2001) A sport-physiological perspective on bird migration: evidence for flight-induced muscle damage. J Exp Biol 204:2683–2690

    CAS  PubMed  Google Scholar 

  • Guglielmo CG, Haunerland NH, Hochachka PW, Williams TD (2002) Seasonal dynamics of flight muscle fatty acid binding protein and catabolic enzymes in a long-distance migrant shorebird. Am J Physiol Regul Intgr Comp Physiol 282:R1405–R1413

    Article  CAS  Google Scholar 

  • Güntürkün O (2000) Sensory physiology: vision. In: Whittow GC (ed) Sturkie’s avian biology, 5th edn. Academic, San Diego, pp 1–14

    Google Scholar 

  • Gwinner E, Zeman M, Schwabl-Benzinger I et al (1992) Corticosterone levels of passerine birds during migratory flight. Naturwissenschaften 79:276–278

    Article  CAS  Google Scholar 

  • Haase E, Rees A, Harvey S (1986) Flight stimulates adrenocortical activity in pigeons (Columba livia). Gen Comp Endocrinol 61:424–427

    Article  CAS  PubMed  Google Scholar 

  • Harrison JF, Lighton JR (1998) Oxygen-sensitive flight metabolism in the dragonfly Erythemis simplicicollis. J Exp Biol 201:1739–1744

    PubMed  Google Scholar 

  • Harrison JF, Roberts SP (2000) Flight respiration and energetics. Annu Rev Physiol 62:179–205

    Article  CAS  PubMed  Google Scholar 

  • Harvey S, Phillips JG (1982) Adrenocortical responses of ducks to treadmill exercise. J Endocrinol 94:141–146

    Article  CAS  PubMed  Google Scholar 

  • Hasselquist D, Lindström Å, Jenni-Eiermann S et al (2007) Long flights do not influence immune responses of a long-distance migrant bird: a wind-tunnel experiment. J Exp Biol 210:1123–1131

    Article  PubMed  Google Scholar 

  • Jenni L, Jenni-Eiermann S (1998) Fuel supply and metabolic constraints in migrating birds. J Avian Biol 29:521–528

    Article  Google Scholar 

  • Jenni L, Jenni-Eiermann S, Spina F et al (2000) Regulation of protein breakdown and adrenocortical response to stress in birds during migratory flight. Am J Physiol Reg Integr Comp Physiol 278:R1182–R1189

    Article  CAS  Google Scholar 

  • Jenni-Eiermann S, Jenni L (1992) High plasma triglyceride levels in small birds during migratory flight: a new pathway for fuel supply during endurance locomotion at very high mass-specific metabolic rates. Physiol Zool 65:112–123

    Article  CAS  Google Scholar 

  • Jenni-Eiermann S, Jenni L, Kvist A et al (2002) Fuel use and metabolic response to endurance exercise: a wind tunnel study of a long-distance migrating shorebird. J Exp Biol 205:2453–2460

    PubMed  Google Scholar 

  • Jenni-Eiermann S, Hasselquist D, Lindström Å et al (2009) Are birds stressed during long-term flights? A wind tunnel study on circulating corticosterone in the red knot. Gen Comp Endocrinol 164:101–106

    Article  CAS  PubMed  Google Scholar 

  • Jenni-Eiermann S, Jenni L, Smith S et al (2014) Oxidative stress in endurance flight: an unconsidered factor in bird migration. PLoS One. https://doi.org/10.1371/journal.pone.0097650

  • John TM, George JC (1973) Effect of prolonged exercise on levels of plasma glucose, free fatty acids and corticosterone and muscle free fatty acids in the pigeon. Arch Int Physiol Bioch 81:421–425

    CAS  Google Scholar 

  • John TM, Viswanathan M, George JC et al (1988) Flight effects on plasma levels of free fatty acids, growth hormone and thyroid hormones in homing pigeons. Horm Metab Res 20:271–271

    Article  CAS  PubMed  Google Scholar 

  • Johnson CG (1969) Migration and dispersal of insects by flight. Methuen, London

    Google Scholar 

  • Jones G, Rydell J (2003) Attack and defense: Interactions between echolocating bats and their insect prey. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago, Chicago, pp 301–345

    Google Scholar 

  • Kettelhut IC, Wing SS, Goldberg AL (1988) Endocrine regulation of protein breakdown in skeletal muscle. Diabetes Metab Rev 4:751–772

    Article  CAS  PubMed  Google Scholar 

  • Kingsolver JG, Srygley RB (2000) Experimental analyses of body size, flight and survival in pierid butterflies. Evol Ecol Res 2:593–612

    Google Scholar 

  • Klaassen M (1996) Metabolic constraints on long-distance migration in birds. J Exp Biol 199:57–64

    CAS  PubMed  Google Scholar 

  • Kunz TH, Ingalls KA (1994) Folivory in bats: an adaptation derived from frugivory. Funct Ecol 8:665–668

    Google Scholar 

  • Land MF (1997) Visual acuity in insects. Annu Rev Entomol 42:147–177

    Article  CAS  PubMed  Google Scholar 

  • Land MF, Eckert H (1985) Maps of the acute zones of fly eyes. J Comp Physiol A 156:525–538

    Article  Google Scholar 

  • Landys-Cianelli MM, Ramenofsky M, Piersma T et al (2002) Baseline and stress-induced plasma corticosterone during long-distance migration in the bar-tailed godwit, Limosa lapponica. Physiol Biochem Zool 75:101–110

    Article  Google Scholar 

  • Landys-Ciannelli MM, Piersma T, Jukema J (2003) Strategic size changes of internal organs and muscle tissue in the bar-tailed godwit during fat storage on a spring stopover site. Funct Ecol 17:151–179

    Article  Google Scholar 

  • Lehmann FO (2008) When wings touch wakes: understanding locomotor force control by wake-wing interference in insect wings. J Exp Biol 211:224–233

    Article  PubMed  Google Scholar 

  • Liechti F, Witvliet W, Weber R et al (2013) First evidence of a 200-day non-stop flight in a bird. Nat Commun 4:2554. https://doi.org/10.1038/ncomms3554

    Article  PubMed  CAS  Google Scholar 

  • Lundgren BO, Kiessling KH (1988) Comparative aspects of fibre types, areas, and capillary supply in the pectoralis muscle. J Comp Physiol B 158:165–173

    Article  Google Scholar 

  • Maillet D, Weber JM (2007) Relationship between n-3 PUFA content and energy metabolism in the flight muscles of a migrant shorebird: evidence for natural doping. J Exp Biol 210:413–423

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (2006) Development, structure, and function of a novel respiratory organ, the lung-air sac system of birds: to go where no other vertebrate has gone. Biol Rev 81:545–579

    Article  PubMed  Google Scholar 

  • Marden JH, Chai P (1991) Aerial predation and butterfly design: how palatability, mimicry and flight constrain mass allocation. Am Nat 138:15–36

    Article  Google Scholar 

  • Marsh R (1983) Adaptations of the Gray Catbird (Dumetella carolinensis) to long distance migration: energy stores and substrate concentrations in plasma. Auk 100:70–179

    Google Scholar 

  • Martin GR (1985) Eye. In: King AS, McLelland J (eds) Form and function in birds, vol 3. Academic, London, pp 311–374

    Google Scholar 

  • Martin GR (2012) Through birds’ eyes: insights into avian sensory ecology. J Ornithol 153(Suppl 1):S23–S48

    Article  Google Scholar 

  • McCracken GF, Gillam EH, Westbrook JK et al (2008) Brazilian free-tailed bats (Tadarida brasiliensis: Molossidae, Chiroptera) at high altitude: links to migratory insect populations. Integr Comp Biol 48:107–118

    Article  PubMed  Google Scholar 

  • McCracken KG, Barger CP, Bulgarella M et al (2009) Parallel evolution in the major haemoglobin genes of eight species of Andean waterfowl. Mol Ecol 18:3992–4005

    Article  CAS  PubMed  Google Scholar 

  • McFarlan JT, Bonen A, Guglielmo CG (2009) Seasonal up-regulation of protein mediated fatty acid transport in flight muscles of migratory white-throated sparrows (Zonotrichia albicollis). J Exp Biol 212:2934–2940

    Article  CAS  PubMed  Google Scholar 

  • McWilliams SE, Guglielmo CG, Pierce B et al (2004) Flying, fasting, and feeding in birds during migration: a nutritional and physiological ecology perspective. J Avian Biol 35:377–393

    Article  Google Scholar 

  • Mujires F, Johansson LC, Barfield R et al (2008) Leading-edge vortex improves lift in slow-flying bats. Science 319:1250–1253

    Article  CAS  Google Scholar 

  • Norberg UM (ed) (1990) Vertebrate flight. Springer, Berlin

    Google Scholar 

  • Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia: Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos Trans R Soc Lond B 316:335–427

    Article  Google Scholar 

  • Nordström K (2012) Neural specializations for small target detection in insects. Curr Opin Neurobiol 22:272–278

    Article  PubMed  CAS  Google Scholar 

  • Nordström K, O’Carroll DC (2009) Feature detection and the hypercomplex property in insects. Trends Neurosci 32:383–391

    Article  PubMed  CAS  Google Scholar 

  • Olberg RM, Worthington AH, Venator KR (2000) Prey pursuit and interception in dragonflies. J Comp Physiol A 186:155–162

    Article  CAS  PubMed  Google Scholar 

  • Olberg RM, Seaman RC, Coats MI et al (2007) Eye movements and target fixation during dragonfly prey-interception flights. J Comp Physiol A 193:685–693

    Article  CAS  Google Scholar 

  • Orchard I, Ramirez J-M, Lange AB (1993) A multifunctional role for octopamine in locust flight. Annu Rev Entomol 38:227–249

    Article  CAS  Google Scholar 

  • Pelsers MMAL, Butler PJ, Bishop CM et al (1999) Fatty acid binding protein in heart and skeletal muscles of the migratory barnacle goose throughout development. Am J Phys 276:R637–R643

    CAS  Google Scholar 

  • Pennycuick CJ (1998) Computer simulation of fat and muscle burn in long-distance bird migration. J Theor Biol 191:47–61

    Article  CAS  PubMed  Google Scholar 

  • Pennycuick CJ (ed) (2008) Modelling the flying bird. Elsevier, Amsterdam

    Google Scholar 

  • Pierce B, McWilliams SR, O’Connor TP et al (2005) Effect of dietary fatty acid composition on depot fat and exercise performance in a migrating songbird, the red-eyed vireo. J Exp Biol 208:1277–1285

    Article  CAS  PubMed  Google Scholar 

  • Piersma T, Gill RE Jr (1998) Guts don’t fly: small digestive organs in obese Bar-tailed Godwits. Auk 115:196–203

    Article  Google Scholar 

  • Piersma T, Lindström Å (1997) Rapid reversible changes in organ size as a component of adaptive behaviour. Trends Ecol Evol 12:134–138

    Article  CAS  PubMed  Google Scholar 

  • Piersma T, Everaarts JM, Jukema J (1996) Build-up of red blood cells in refuelling Bar-tailed Godwits in relation to individual migratory quality. Condor 98:363–370

    Article  Google Scholar 

  • Piersma T, Gudmundsson GA, Lilliendahl K (1999) Rapid changes in the size of different functional organ and muscle groups during refueling in a long-distance migrating shorebird. Physiol Biochem Zool 72:405–415

    Article  CAS  PubMed  Google Scholar 

  • Portugal SJ, Hubel TY, Fritz J et al (2014) Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight. Nature 505:399–402

    Article  CAS  PubMed  Google Scholar 

  • Price ER (2010) Dietary lipid composition and avian migratory flight performance: development of a theoretical framework for avian fat storage. Comp Biochem Physiol A 157:297–309

    Article  CAS  Google Scholar 

  • Ratcliffe JM, Nydam ML (2008) Multimodal warning signals for a multiple predator world. Nature 455:96–99

    Article  CAS  PubMed  Google Scholar 

  • Rees A, Harvey S (1987) Adrenocortical responses of pigeons (Columba livia) to treadwheel exercise. Gen Comp Endocrinol 65:117–120

    Article  CAS  PubMed  Google Scholar 

  • Reneerkens J, Morrison RIG, Ramenofsky M et al (2002) Baseline and stress-induced levels of corticosterone during different life cycle substages in a shorebird on the high arctic breeding grounds. Physiol Biochem Zool 75:200–208

    Article  CAS  PubMed  Google Scholar 

  • Reynolds AM, Reynolds DR (2009) Aphid aerial density profiles are consistent with turbulent advection amplifying flight behaviours: abandoning the epithet ‘passive’. Proc R Soc B 276:137–143

    Article  PubMed  Google Scholar 

  • Reynolds DR, Chapman JW, Edwards AS (2005) Radar studies of the vertical distributions of insects migrating over southern Britain: the influence of temperature inversions on nocturnal layer concentrations. Bull Entomol Res 95:259–274

    Article  CAS  PubMed  Google Scholar 

  • Roberts TJ, Weber JM, Hoppeler H et al (1996) Design of the oxygen and substrate pathways II. Defining the upper limits of carbohydrates and fat oxidation. J Exp Biol 199:1651–1658

    CAS  PubMed  Google Scholar 

  • Rothe HJ, Biesel W, Nachtigall W (1987) Pigeon flight in a wind tunnel. II Gas exchange and power requirements. J Com Physio B 157:99–10

    Article  Google Scholar 

  • Sahlin K, Katz A, Broberg S (1990) Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am J Phys 259:C834–C841

    Article  CAS  Google Scholar 

  • Scheid P, Slama H, Piiper J (1972) Mechanisms of the unidirectional flow in parabronchi of avian lungs: measurements in duck lung preparations. Respir Physiol 14:83–95

    Article  CAS  PubMed  Google Scholar 

  • Schmaljohann H, Liechti F (2009) Adjustments of wingbeat frequency and air speed to air density in free-flying migratory birds. J Exp Biol 212:3633–3642

    Article  CAS  PubMed  Google Scholar 

  • Schmaljohann H, Bruderer B, Liechti F (2008) Sustained bird flights occur at temperatures far beyond expected limits. Anim Behav 76:1133–1138

    Article  Google Scholar 

  • Schmaljohann H, Liechti F, Bruderer B (2009) Trans-Sahara migrants select flight altitudes to minimize energy costs rather than water loss. Behav Ecol Sociobiol 63:1609–1619

    Article  Google Scholar 

  • Schmidt-Nielsen K (ed) (1984) Scaling: why is animal size so important? Cambridge University Press, Cambridge

    Google Scholar 

  • Schmidt-Nielsen K (ed) (1997) Animal physiology, 5th edn. Cambridge, University Press

    Google Scholar 

  • Schwilch R, Jenni L, Jenni-Eiermann S (1996) Metabolic responses of homing pigeons to flight and subsequent recovery. J Comp Physiol B 166:77–87

    Article  Google Scholar 

  • Schwilch R, Piersma T, Holmgren NMA et al (2002) Do migratory birds need a nap after a long non-stop flight? Ardea 90(1):149–154

    Google Scholar 

  • Scott GR (2011) Elevated performance: the unique physiology of birds that fly high altitudes. J Exp Biol 214:2455–2462

    Article  CAS  PubMed  Google Scholar 

  • Scott I, Evans PR (1992) The metabolic output of avian (Sturnus vulgaris, Calidris alpina) adipose tissue liver and skeletal muscle: implications for BMR/body mass relationships. Comp Biochem Physiol 103A:329–332

    Article  Google Scholar 

  • Scott GR, Milsom WK (2007) Control of breathing and adaption to high altitude in the bar-headed goose. Am J Phys Regul Integr Comp Phys 293:R379–R391

    CAS  Google Scholar 

  • Scott GR, Schulte PM, Egginton S et al (2011) Molecular evolution of cytochrome c oxidase underlies high-altitude adaptation in the bar-headed goose. Mol Biol Evol 28:351–363

    Article  CAS  PubMed  Google Scholar 

  • Scott GR, Hawkes LA, Frappell PB (2015) How bar-headed geese fly over the Himalayas. Physiology 30:107–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speakman JR, Thomas DW (2003) Physiological ecology and energetics of bats. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago, Chicago, pp 430–490

    Google Scholar 

  • Speakman JR, Hays GC, Webb PI (1994) Is hyperthermia a constraint on the diurnal activity of bats? J Theor Biol 171:325–341

    Article  Google Scholar 

  • Srygley RB (2001) Compensation for fluctuations in crosswind drift without stationary landmarks in butterflies migrating over seas. Anim Behav 61:191–203

    Article  PubMed  Google Scholar 

  • Srygley RB, Chai P (1990a) Flight morphology of Neotropical butterflies: palatability and distribution of mass to the thorax and abdomen. Oecologia 84:491–499

    Article  PubMed  Google Scholar 

  • Srygley RB, Chai P (1990b) Predation and the elevation of thoracic temperature in brightly colored Neotropical butterflies. Am Nat 135:766–787

    Article  Google Scholar 

  • Srygley RB, Dudley R (1993) Correlations of the position of center of body mass with butterfly escape tactics. J Exp Biol 174:155–166

    Google Scholar 

  • Srygley RB, Dudley R (2008) Optimal strategies for insects migrating in the flight boundary layer: mechanisms and consequences. Integr Comp Biol 48:119–133

    Article  PubMed  Google Scholar 

  • Srygley RB, Kingsolver JG (1998) Red-wing blackbird reproductive behaviour and the palatability, flight performance, and morphology of temperate pierid butterflies (Colias, Pieris, and Pontia). Biol J Linn Soc 64:41–55

    Google Scholar 

  • Srygley RB, Kingsolver JG (2000) Effects of weight loading on flight performance and survival of palatable Neotropical Anartia fatima butterflies. Biol J Linn Soc 70:707–725

    Article  Google Scholar 

  • Srygley RB, Thomas ALR (2002) Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420:660–664

    Article  CAS  PubMed  Google Scholar 

  • Srygley RB, Dudley R, Oliveira EG et al (2010) El Niño and dry season rainfall influence hostplant phenology and an annual butterfly migration from Neotropical wet to dry forests. Glob Chang Biol 16:936–945

    Article  Google Scholar 

  • Steele JE (1985) Control of metabolic processes. In: Kerkut GA, Gilbert LI (eds) Endocrinology II, Comprehensive insect physiology, biochemistry, and pharmacology, vol 8. Pergamon Press, Oxford, pp 99–145

    Google Scholar 

  • Stockwell EF (2001) Morphology and flight manoeuvrability in New World leaf-nosed bats (Chiroptera: Phyllostomidae). J Zool 254:505–514

    Article  Google Scholar 

  • Swartz SM, Freeman PW, Stockwell EF (2003) Ecomorphology of bats: comparative and experimental approaches relating structural design to ecology. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago, Chicago, pp 257–300

    Google Scholar 

  • Swartz SM, Breuer KS, Willis DJ (2008) Aeromechanics in aeroecology: flight biology in the aerosphere. Integr Comp Biol 48:85–89

    Article  PubMed  Google Scholar 

  • Taylor RAJ, Reling D (1986) Density/height profile and long-range dispersal of first-instar gypsy moth (Lepidoptera: Lymantriidae). Environ Entomol 15:431–435

    Article  Google Scholar 

  • Thomas ALR, Taylor GK, Srygley RB et al (2004) Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift generating mechanisms, controlled primarily via angle of attack. J Exp Biol 207:4299–4323

    Article  PubMed  Google Scholar 

  • Thomson SC, Speakman JR (1999) Absorption of visible spectrum radiation by the wing membranes of living pteropodid bats. J Comp Physiol B 169:187–194

    Article  CAS  PubMed  Google Scholar 

  • Tucker VA (2000) The deep fovea, sideways vision and spiral flight paths in raptors. J Exp Biol 203:3745–3754

    CAS  PubMed  Google Scholar 

  • Usherwood JR, Stavrou M, Lowe JC et al (2011) Flying in a flock comes at a cost in pigeons. Nature 474:494–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Videler JJ (ed) (2005) Avian flight. Oxford University Press, Oxford

    Google Scholar 

  • Videler JJ, Stamhuis EJ, Povel GDE (2004) Leading-edge vortex lifts swifts. Science 306:1960–1962

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan M, JohnTM GJC et al (1987) Flight effects on plasma glucose, lactate, catecholamines and corticosterone in homing pigeons. Horm Metab Res 19:400–402

    Article  CAS  PubMed  Google Scholar 

  • Vock R, Weibel ER, Hoppeler H et al (1996) Design of the oxygen and substrate pathways. V. Structural basis of vascular substrate supply to muscle cells. J Exp Biol 199:1675–1688

    CAS  PubMed  Google Scholar 

  • Voigt CC, Lewanzik D (2011) Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats. Proc R Soc B 278:2311–2317

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward S, Rayner JMV, Möller U et al (1999) Heat transfer from starlings Sturnus vulgaris during flight. J Exp Biol 202:1589–1602

    PubMed  Google Scholar 

  • Warrick DR (1998) The turning- and linear-maneuvering performance of birds: the cost of efficiency for coursing insectivores. Can J Zool 76:1063–1079

    Article  Google Scholar 

  • Warrick DR, Tobalske BW, Powers DR (2005) Aerodynamics of the hovering hummingbird. Nature 435:1094–1097

    Article  CAS  PubMed  Google Scholar 

  • Weber JM (1992) Pathways for oxidative fuel provision to working muscles: ecological consequences of maximal supply limitations. Experientia 48:557–564

    Article  CAS  PubMed  Google Scholar 

  • Weber JM, Roberts TJ, Vock R et al (1996a) Design of the oxygen and substrate pathways. III Partitioning energy provision from carbohydrates. J Exp Biol 199:1659–1666

    CAS  PubMed  Google Scholar 

  • Weber JM, Brichon G, Zwingelstein G et al (1996b) Design of the oxygen and substrate pathways. IV. Partitioning energy provision from fatty acids. J Exp Biol 199:1667–1674

    CAS  PubMed  Google Scholar 

  • Westbrook JK (2008) Noctuid migration in Texas within the nocturnal aeroecological boundary layer. Integr Comp Biol 48:99–106

    Article  PubMed  Google Scholar 

  • Wolfe RR, Klein S, Carraro F et al (1990) Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am J Phys 258:E382–E389

    CAS  Google Scholar 

  • Yanoviak SP, Dudley R, Kaspari M (2005) Directed aerial descent in canopy ants. Nature 433:624–626

    Article  CAS  PubMed  Google Scholar 

  • Yanoviak SP, Kaspari M, Dudley R (2009) Gliding hexapods and the origins of insect aerial behaviour. Biol Lett 5:510–512

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Jenni-Eiermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jenni-Eiermann, S., Srygley, R.B. (2017). Physiological Aeroecology: Anatomical and Physiological Adaptations for Flight. In: Chilson, P., Frick, W., Kelly, J., Liechti, F. (eds) Aeroecology. Springer, Cham. https://doi.org/10.1007/978-3-319-68576-2_5

Download citation

Publish with us

Policies and ethics