Skip to main content

Echocardiography Evaluation of Left Ventricular Systolic Function, Systolic Dysfunction, and Ventricular Dyssynchrony

  • Chapter
  • First Online:
  • 1988 Accesses

Abstract

The ejection fraction (EF) is the most widely used measure and popular method in evaluating left ventricular (LV) systolic function and is considered a critical prognostic factor in all types of heart diseases.

Precise evaluation of LV volume and systolic function is necessary for defining the optimal timing of surgery in patients with valvular heart diseases such as severe mitral regurgitation and aortic regurgitation.

This section attempts to introduce the different findings that can be obtained from echocardiography in patients with systolic heart failure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CRT:

Cardiac resynchronization therapy

EF:

Ejection fraction

GLS:

Global longitudinal strain

HR:

Heart rate

IVC:

Inferior vena cava

LV:

Left ventricle

LVOT:

Left ventricular outflow tract

PAP:

Pulmonary arterial pressure

PVR:

Pulmonary vascular resistance

RA:

Right atrium

RV:

Right ventricle

STE:

Speckle-tracking echocardiography

SV:

Stroke volume

TDI:

Tissue Doppler imaging

TRV:

Tricuspid regurgitation velocity

VTI:

Velocity time integral

References

  1. Otto CM. The practice of clinical echocardiography. 5th ed. Philadelphia: Saunders; 2017. p. 107–27.

    Google Scholar 

  2. Kumar N, Oommen R, Thomson VS, Jose JV. Assessment of left ventricular systolic function by velocity vector imaging. Indian Heart J. 2012;64(2):146–9.

    Article  Google Scholar 

  3. Wang TJ, Evans JC, Benjamin EJ, Levy D, LeRoy EC, Vasan RS. Natural history of asymptomatic left ventricular systolic dysfunction in the community. Circulation. 2003;108(8):977–82.

    Article  Google Scholar 

  4. Mulvagh SL, DeMaria AN, Feinstein SB, Burns PN, Kaul S, Miller JG, et al. Contrast echocardiography: current and future applications. J Am Soc Echocardiogr. 2000;13(4):331–42.

    Article  CAS  Google Scholar 

  5. Gutgesell HP. Echocardiographic assessment of cardiac function in infants and children. J Am Coll Cardiol. 1985;5(1 Suppl):95s–103s.

    Article  CAS  Google Scholar 

  6. Cameli M, Mondillo S, Solari M, Righini FM, Andrei V, Contaldi C, et al. Echocardiographic assessment of left ventricular systolic function: from ejection fraction to torsion. Heart Fail Rev. 2016;21(1):77–94.

    Article  Google Scholar 

  7. Quinones MA, Waggoner AD, Reduto LA, Nelson JG, Young JB, Winters WL Jr, et al. A new, simplified and accurate method for determining ejection fraction with two-dimensional echocardiography. Circulation. 1981;64(4):744–53.

    Article  CAS  Google Scholar 

  8. Wandt B, Bojo L, Tolagen K, Wranne B. Echocardiographic assessment of ejection fraction in left ventricular hypertrophy. Heart. 1999;82(2):192–8.

    Article  CAS  Google Scholar 

  9. Gottdiener JS, Bednarz J, Devereux R, Gardin J, Klein A, Manning WJ, et al. American Society of Echocardiography recommendations for use of echocardiography in clinical trials. J Am Soc Echocardiogr. 2004;17(10):1086–119.

    PubMed  Google Scholar 

  10. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39. e14.

    Article  Google Scholar 

  11. Otterstad JE, Froeland G, St John Sutton M, Holme I. Accuracy and reproducibility of biplane two-dimensional echocardiographic measurements of left ventricular dimensions and function. Eur Heart J. 1997;18(3):507–13.

    Article  CAS  Google Scholar 

  12. Senni M, Rodeheffer RJ, Tribouilloy CM, Evans JM, Jacobsen SJ, Bailey KR, et al. Use of echocardiography in the management of congestive heart failure in the community. J Am Coll Cardiol. 1999;33(1):164–70.

    Article  CAS  Google Scholar 

  13. Dorosz JL, Lezotte DC, Weitzenkamp DA, Allen LA, Salcedo EE. Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;59(20):1799–808.

    Article  Google Scholar 

  14. Marwick TH. Methods used for the assessment of LV systolic function: common currency or tower of Babel? Heart. 2013;99(15):1078–86.

    Article  Google Scholar 

  15. Mannaerts HF, van der Heide JA, Kamp O, Stoel MG, Twisk J, Visser CA. Early identification of left ventricular remodelling after myocardial infarction, assessed by transthoracic 3D echocardiography. Eur Heart J. 2004;25(8):680–7.

    Article  Google Scholar 

  16. Marwick TH. The role of echocardiography in heart failure. J Nucl Med. 2015;56(Suppl 4):31s–8s.

    Article  Google Scholar 

  17. Bax JJ, Poldermans D, Schinkel AF, Boersma E, Elhendy A, Maat A, et al. Perfusion and contractile reserve in chronic dysfunctional myocardium: relation to functional outcome after surgical revascularization. Circulation. 2002;106(12 Suppl 1):I14–8.

    PubMed  Google Scholar 

  18. Schinkel AF, Bax JJ, van Domburg R, Elhendy A, Valkema R, Vourvouri EC, et al. Dobutamine-induced contractile reserve in stunned, hibernating, and scarred myocardium in patients with ischemic cardiomyopathy. J Nucl Med. 2003;44(2):127–33.

    CAS  PubMed  Google Scholar 

  19. Jambrik Z, Monti S, Coppola V, Agricola E, Mottola G, Miniati M, et al. Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. Am J Cardiol. 2004;93(10):1265–70.

    Article  Google Scholar 

  20. Picano E, Frassi F, Agricola E, Gligorova S, Gargani L, Mottola G. Ultrasound lung comets: a clinically useful sign of extravascular lung water. J Am Soc Echocardiogr. 2006;19(3):356–63.

    Article  Google Scholar 

  21. Natanzon A, Kronzon I. Pericardial and pleural effusions in congestive heart failure-anatomical, pathophysiologic, and clinical considerations. Am J Med Sci. 2009;338(3):211–6.

    Article  Google Scholar 

  22. Klein AL, Abbara S, Agler DA, Appleton CP, Asher CR, Hoit B, et al. American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with pericardial disease: endorsed by the Society for Cardiovascular Magnetic Resonance and Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr. 2013;26(9):965–1012. e15.

    Article  Google Scholar 

  23. Ayuela Azcarate JM, Clau Terre F, Ochagavia A, Vicho Pereira R. Role of echocardiography in the hemodynamic monitorization of critical patients. Med Intensiva. 2012;36(3):220–32.

    Article  CAS  Google Scholar 

  24. Stein JH, Neumann A, Preston LM, Costanzo MR, Parrillo JE, Johnson MR, et al. Echocardiography for hemodynamic assessment of patients with advanced heart failure and potential heart transplant recipients. J Am Coll Cardiol. 1997;30(7):1765–72.

    Article  CAS  Google Scholar 

  25. St John Sutton M. A comprehensive noninvasive hemodynamic assessment of systolic heart failure. Circ Heart Fail. 2010;3(3):337–9.

    Article  Google Scholar 

  26. Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol. 2003;41(6):1021–7.

    Article  Google Scholar 

  27. Howard LS, Grapsa J, Dawson D, Bellamy M, Chambers JB, Masani ND, et al. Echocardiographic assessment of pulmonary hypertension: standard operating procedure. Eur Respir Rev. 2012;21(125):239–48.

    Article  Google Scholar 

  28. Lancellotti P, Gerard PL, Pierard LA. Long-term outcome of patients with heart failure and dynamic functional mitral regurgitation. Eur Heart J. 2005;26(15):1528–32.

    Article  Google Scholar 

  29. Lamas GA, Mitchell GF, Flaker GC, Smith SC Jr, Gersh BJ, Basta L, et al. Clinical significance of mitral regurgitation after acute myocardial infarction. Survival and Ventricular Enlargement Investigators. Circulation. 1997;96(3):827–33.

    Article  CAS  Google Scholar 

  30. Yiu SF, Enriquez-Sarano M, Tribouilloy C, Seward JB, Tajik AJ. Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction: a quantitative clinical study. Circulation. 2000;102(12):1400–6.

    Article  CAS  Google Scholar 

  31. Ciampi Q, Villari B. Role of echocardiography in diagnosis and risk stratification in heart failure with left ventricular systolic dysfunction. Cardiovasc Ultrasound. 2007;5:34.

    Article  Google Scholar 

  32. Sadeghpour A, Abtahi F, Kiavar M, Esmaeilzadeh M, Samiei N, Ojaghi SZ, et al. Echocardiographic evaluation of mitral geometry in functional mitral regurgitation. J Cardiothorac Surg. 2008;3(1):54.

    Article  Google Scholar 

  33. Schwarzwald CC, Schober KE, Bonagura JD. Methods and reliability of tissue Doppler imaging for assessment of left ventricular radial wall motion in horses. J Vet Intern Med. 2009;23(3):643–52.

    Article  CAS  Google Scholar 

  34. ur Rahman H, Khan SB, Noor L, Hadi A, Nawaz T, Shah ST, et al. Assessment of left ventricular systolic and diastolic function by tissue Doppler imaging after acute myocardial infarction. J Ayub Med Coll Abbottabad. 2011;23(2):108–11.

    PubMed  Google Scholar 

  35. Abduch MC, Alencar AM, Mathias W Jr, Vieira ML. Cardiac mechanics evaluated by speckle tracking echocardiography. Arq Bras Cardiol. 2014;102(4):403–12.

    PubMed  PubMed Central  Google Scholar 

  36. Mondillo S, Galderisi M, Mele D, Cameli M, Lomoriello VS, Zaca V, et al. Speckle-tracking echocardiography: a new technique for assessing myocardial function. J Ultrasound Med. 2011;30(1):71–83.

    Article  Google Scholar 

  37. Nahum J, Bensaid A, Dussault C, Macron L, Clemence D, Bouhemad B, et al. Impact of longitudinal myocardial deformation on the prognosis of chronic heart failure patients. Circ Cardiovasc Imaging. 2010;3(3):249–56.

    Article  Google Scholar 

  38. Bajraktari G, Henein MY. The clinical dilemma of quantifying mechanical left ventricular dyssynchrony for cardiac resynchronization therapy: segmental or global? Echocardiography. 2015;32(1):150–5.

    Article  Google Scholar 

  39. Bax JJ, Bleeker GB, Marwick TH, Molhoek SG, Boersma E, Steendijk P, et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol. 2004;44(9):1834–40.

    Article  Google Scholar 

  40. Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt OA, et al. 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy: the task force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Europace. 2013;15(8):1070–118.

    Article  Google Scholar 

  41. Cleland J, Freemantle N, Ghio S, Fruhwald F, Shankar A, Marijanowski M, et al. Predicting the long-term effects of cardiac resynchronization therapy on mortality from baseline variables and the early response a report from the CARE-HF (Cardiac Resynchronization in Heart Failure) Trial. J Am Coll Cardiol. 2008;52(6):438–45.

    Article  Google Scholar 

  42. Parameswaran AC, Purushottam B, Amanullah A, Figueredo VM. Distribution of dyssynchrony in subjects with no known cardiac disease and comparison of velocity vector imaging to color-coded tissue Doppler imaging. Echocardiography. 2013;30(2):180–9.

    Article  Google Scholar 

  43. Solomon SD, Foster E, Bourgoun M, Shah A, Viloria E, Brown MW, et al. Effect of cardiac resynchronization therapy on reverse remodeling and relation to outcome: multicenter automatic defibrillator implantation trial: cardiac resynchronization therapy. Circulation. 2010;122(10):985–92.

    Article  Google Scholar 

  44. Verbrugge FH, Verhaert D, Grieten L, Dupont M, Rivero-Ayerza M, De Vusser P, et al. Revisiting diastolic filling time as mechanistic insight for response to cardiac resynchronization therapy. Europace. 2013;15(12):1747–56.

    Article  Google Scholar 

  45. Wu VC-C, Takeuchi M. Three-dimensional echocardiography: current status and real-life applications. Acta Cardiol Sin. 2017;33(2):107–18.

    PubMed  PubMed Central  Google Scholar 

  46. Edner M, Kim Y, Hansen KN, Nissen H, Espersen G, La Rosee K, et al. Prevalence and inter-relationship of different Doppler measures of dyssynchrony in patients with heart failure and prolonged QRS: a report from CARE-HF. Cardiovasc Ultrasound. 2009;7:1.

    Article  Google Scholar 

  47. van der Hulst AE, Delgado V, Blom NA, van de Veire NR, Schalij MJ, Bax JJ, et al. Cardiac resynchronization therapy in paediatric and congenital heart disease patients. Eur Heart J. 2011;32(18):2236–46.

    Article  Google Scholar 

  48. Galderisi M, Cattaneo F, Mondillo S. Doppler echocardiography and myocardial dyssynchrony: a practical update of old and new ultrasound technologies. Cardiovasc Ultrasound. 2007;5:28.

    Article  Google Scholar 

  49. Pitzalis MV, Iacoviello M, Romito R, Massari F, Rizzon B, Luzzi G, et al. Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. J Am Coll Cardiol. 2002;40(9):1615–22.

    Article  Google Scholar 

  50. Delgado V, Ypenburg C, van Bommel RJ, Tops LF, Mollema SA, Marsan NA, et al. Assessment of left ventricular dyssynchrony by speckle tracking strain imaging: comparison between longitudinal, circumferential, and radial strain in cardiac resynchronization therapy. J Am Coll Cardiol. 2008;51(20):1944–52.

    Article  Google Scholar 

  51. Marcus GM, Rose E, Viloria EM, Schafer J, De Marco T, Saxon LA, et al. Septal to posterior wall motion delay fails to predict reverse remodeling or clinical improvement in patients undergoing cardiac resynchronization therapy. J Am Coll Cardiol. 2005;46(12):2208–14.

    Article  Google Scholar 

  52. Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J, et al. Results of the predictors of response to CRT (PROSPECT) trial. Circulation. 2008;117(20):2608–16.

    Article  Google Scholar 

  53. Gorcsan J 3rd. Echocardiographic assessment of ventricular dyssynchrony. Curr Heart Fail Rep. 2008;5(1):31–7.

    Article  Google Scholar 

  54. Cho EJ, Caracciolo G, Khandheria BK, Steidley DE, Scott R, Abhayaratna WP, et al. Tissue Doppler image-derived measurements during isovolumic contraction predict exercise capacity in patients with reduced left ventricular ejection fraction. JACC Cardiovasc Imaging. 2010;3(1):1–9.

    PubMed  Google Scholar 

  55. De Backer J, Matthys D, Gillebert TC, De Paepe A, De Sutter J. The use of Tissue Doppler Imaging for the assessment of changes in myocardial structure and function in inherited cardiomyopathies. Eur J Echocardiogr. 2005;6(4):243–50.

    Google Scholar 

  56. Kadappu KK, Thomas L. Tissue Doppler imaging in echocardiography: value and limitations. Heart Lung Circ. 2015;24(3):224–33.

    Article  Google Scholar 

  57. Mundigler G, Zehetgruber M. Tissue Doppler Imaging: myocardial velocities and strain—are there clinical applications? J Clin Basic Cardiol. 2002;5(2):125–32.

    Google Scholar 

  58. Dandel M, Lehmkuhl H, Knosalla C, Suramelashvili N, Hetzer R. Strain and strain rate imaging by echocardiography – basic concepts and clinical applicability. Curr Cardiol Rev. 2009;5(2):133–48.

    Article  Google Scholar 

  59. Marwick TH. Measurement of strain and strain rate by echocardiography: ready for prime time? J Am Coll Cardiol. 2006;47(7):1313–27.

    Article  Google Scholar 

  60. Marwick TH, Yu C-M, Sun JP, editors. Myocardial imaging: tissue Doppler and speckle tracking. Malden: Wiley-Blackwell; 2007.

    Google Scholar 

  61. Van de Veire NR, Bleeker GB, De Sutter J, Ypenburg C, Holman ER, van der Wall EE, et al. Tissue synchronisation imaging accurately measures left ventricular dyssynchrony and predicts response to cardiac resynchronisation therapy. Heart. 2007;93(9):1034–9.

    Article  Google Scholar 

  62. Sadeghpour A, Kyavar M, Behzadnia N, Maddadi S, Parsaei M, Maleki M, et al. Left ventricular systolic dyssynchrony in patients with hypertrophic cardiomyopathy: the prevalence and its relation to syncope. Iran Cardivasc Res J. 2010;4(4):152–8.

    Google Scholar 

  63. Delgado-Montero A, Tayal B, Goda A, Ryo K, Marek JJ, Sugahara M, et al. Additive prognostic value of echocardiographic global longitudinal and global circumferential strain to electrocardiographic criteria in patients with heart failure undergoing cardiac resynchronization therapy. Circ Cardiovasc Imaging. 2016;9(6):e004241.

    Article  Google Scholar 

  64. Badano LP, Lang RM, Zamorano JL. Textbook of real-time three dimensional echocardiography. New York: Springer; 2011.

    Book  Google Scholar 

  65. Marsan NA, Bleeker GB, Ypenburg C, Van Bommel RJ, Ghio S, Van de Veire NR, et al. Real-time three-dimensional echocardiography as a novel approach to assess left ventricular and left atrium reverse remodeling and to predict response to cardiac resynchronization therapy. Heart Rhythm. 2008;5(9):1257–64.

    Article  Google Scholar 

  66. Rabben SI. Technical principles of transthoracic three-dimensional echocardiography. In: Badano L, Lang RM, Zamorano JL, editors. Textbook of real-time three dimensional echocardiography. London: Springer; 2010. p. 9–24.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Electronic Supplementary Materials

(related to Fig. 11.4): Left Ventricular ejection fraction measurement using 3DE (AVI 3658 kb)

(related to Fig. 11.5): The aneurysm of the LV apex in the 4-chamber view (AVI 20965 kb)

(related to Fig. 11.5): Large thrombus into the LV apex (AVI 11881 kb)

(related to Fig. 11.5): Large amount of pericardial effusion (AVI 21176 kb)

(related to Fig. 11.5): Pleural effusion in the apical 4-chamber and parasternal long-axis views, respectively (AVI 26457 kb)

(related to Fig. 11.10): Significant tethering of the mitral valve leaflets (AVI 10406 kb)

(related to Fig. 11.10): With severe mitral regurgitation in the apical 4-chamber view (AVI 13842 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akiash, N., Alizadehasl, A., Sadeghpour, A. (2018). Echocardiography Evaluation of Left Ventricular Systolic Function, Systolic Dysfunction, and Ventricular Dyssynchrony. In: Sadeghpour, A., Alizadehasl, A. (eds) Case-Based Textbook of Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-67691-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67691-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67689-0

  • Online ISBN: 978-3-319-67691-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics