Skip to main content

Natural Products from Plants as Potential Leads as Novel Antileishmanials: A Preclinical Review

  • Chapter
  • First Online:
Natural Antimicrobial Agents

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 19))

  • 1713 Accesses

Abstract

Different plant species have been used in the folk medicine to the treatment of several pathologies. In some poor regions of the world, the use of these extracts is the unique therapeutic source for the treatment of antiparasitic diseases, including leishmaniasis. The effects of these extracts are directly associated to the production and accumulation of specific active natural products/secondary metabolites—terpenoids, phenolic derivatives, alkaloids, lignoids. Several studies have been conducted for evaluation of in vitro antileishmanial activity of these compounds but there are only few reports that describe the preclinical evaluation. In this aspect, this chapter attempts to give an overview on the potential of such plant-derived natural products as antileishmanial leads, mainly those that displayed in vivo potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 7:e35671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andrade HM, Toledo VPCP, Pinheiro MB, Guimarães TMPD, Oliveira NC, Castro JA, Silva RN, Amorim AC, Brandão RMSS, Yoko M, Silva AS, Dumont K, Ribeiro ML, Bartchewsky W, Monte SJH (2011) Evaluation of miltefosine for the treatment of dogs naturally infected with L. infantum (=L. chagasi) in Brazil. Vet Parasitol 181:83–90

    Article  CAS  PubMed  Google Scholar 

  • Arruda DC, Miguel DC, Yokoyama-Yasunaka JKU, Katzin AM, Uliana SRB (2009) Inhibitory activity of limonene against Leishmania parasites in vitro and in vivo. Biomed Pharmacother 63:643–649

    Article  CAS  PubMed  Google Scholar 

  • Balasegaram M, Ritmeijer K, Lima MA, Burza S, Ortiz Genovese G, Milani B, Gaspani S, Potet J, Chappuis F (2012) Liposomal amphotericin B as a treatment for human leishmaniasis. Expert Opin Emerg Drugs 17:493–510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bumb RA, Mehta RD, Ghiya BC, Jakhar R, Prasad N, Soni P, Lezama-Davila C, Satoskar AR (2010) Efficacy of short-duration (twice weekly) intralesional sodium stibogluconate in treatment of cutaneous leishmaniasis in India. Br J Dermatol 163:854–858

    Article  CAS  PubMed  Google Scholar 

  • Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, Alvar J, Boelaert M (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5:873–882

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Christensen SB, Theander TG (1994) Antileishmanial activity of Licochalcone A in mice infected with Leishmania major and in hamsters infected with Leishmania donovani. Antimicrob Agents Chemother 38:1339–1344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corpas-López V, Morillas-Márquez F, Navarro-Moll MC, Merino-Espinosa G, Díaz-Sáez V, Martín-Sánchez J (2015) (−)-α-Bisabolol, a promising oral compound for the treatment of visceral leishmaniasis. J Nat Prod 78:1202–1207

    Google Scholar 

  • Croft SL, Coombs GH (2003) Leishmaniasis—Current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 19:502–508

    Article  CAS  PubMed  Google Scholar 

  • Dantas-Torres F (2009) Canine leishmaniosis in South America. Parasit Vectors 2:S1

    Article  PubMed Central  PubMed  Google Scholar 

  • Dantas-Torres F, Solano-Gallego L, Baneth G, Ribeiro VM, de Paiva-Cavalcanti M, Otranto D (2012) Canine leishmaniosis in the old and new worlds: unveiled similarities and differences. Trends Parasitol 28:531–538

    Article  PubMed  Google Scholar 

  • Den Boer M, Argaw D, Jannin J, Alvar J (2011) Leishmaniasis impact and treatment access. Clin Microbiol Infect 17:1471–1477

    Article  Google Scholar 

  • Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27:305–318

    Article  CAS  PubMed  Google Scholar 

  • Desjeux P, Ghosh R, Dhalaria P, Strub-Wourgaft N, Zijlstra EE (2013) Report of the Post Kala-Azar Dermal Leishmaniasis (PKDL) consortium meeting, New Delhi, India, 27–29 June 2012. Parasit. Vectors 6:196

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferreira ME, de Arias AR, Yaluff G, de Bilbao NV, Nakayama H, Torres S, Schinini A, Guy I, Heinzen H, Fournet A (2010) Antileishmanial activity of furoquinolines and coumarins from Helietta apiculata. Phytomedicine 17:375–378

    Article  CAS  PubMed  Google Scholar 

  • Ferreira ME, Rojas de Arias A, Torres de Ortiz S, Inchausti A, Nakayama H, Thouvenel C, Hocquemiller R, Fournet A (2002) Leishmanicidal activity of two canthin-6-one alkaloids, two major constituents of Zanthoxylum chiloperone var. angustifolium. J Ethnopharmacol 80:199–202

    Article  CAS  PubMed  Google Scholar 

  • Flores N, Cabrera G, Jiménez IA, Piñero J, Giménez A, Bourdy G, Cortés-Selva F, Bazzocchi IL (2007) Leishmanicidal constituents from the leaves of Piper rusbyi. Planta Med 73:206–211

    Article  CAS  PubMed  Google Scholar 

  • Fournet A, Barrios A (1992) Effect of natural naphthoquinones in BALB/c mice infected with Leishmania amazonensis and L. venezuelensis. Trop Med Parasitol 43:219–222

    CAS  PubMed  Google Scholar 

  • Fournet A, Barrios AA, Muñoz V, Hocquemiller R, Roblot F, Cavé A (1994) Antileishmanial activity of a tetralone isolated from Ampelocera edentula, a Bolivian plant used as a treatment for cutaneous leishmaniasis. Planta Med 60:8–12

    Article  CAS  PubMed  Google Scholar 

  • Germonprez N, Maes L, Van Puyvelde L, Van Tri M, Tuan DA, De Kimpe N (2005) In Vitro and in vivo anti-leishmanial activity of triterpenoid saponins isolated from Maesa balansae and some chemical derivatives. J Med Chem 48:32–37

    Article  CAS  PubMed  Google Scholar 

  • Herwaldt BL (1999) Leishmaniasis. Lancet 354:1191–1199

    Google Scholar 

  • Inacio JDF, Canto-Cavalheiro MM, Almeida-Amaral EE (2013) In vitro and in vivo effects of (−)-epigallocatechin 3-O-gallate on Leishmania amazonensis. J Nat Prod 76:1993–1996

    Article  CAS  PubMed  Google Scholar 

  • Khaliq T, Misra P, Gupta S, Reddy KP, Kant R, Maulik PR, Dube A, Narender T (2009) Peganine hydrochloride dihydrate an orally active antileishmanial agent. Bioorg Med Chem Lett 19:2585–2586

    Article  CAS  PubMed  Google Scholar 

  • Kyriazis JD, Aligiannis N, Polychronopoulos P, Skaltsounis A-L, Dotsika E (2013) Leishmanicidal activity assessment of olive tree extracts. Phytomedicine 20:275–281

    Article  CAS  PubMed  Google Scholar 

  • Manna L, Reale S, Picillo E, Vitale F, Gravino AE (2008) Interferon-gamma (INF-γ), IL4 expression levels and Leishmania DNA load as prognostic markers for monitoring response to treatment of leishmaniotic dogs with miltefosine and allopurinol. Cytokine 44:288–292

    Article  CAS  PubMed  Google Scholar 

  • McGwire BS, Satoskar AR (2014) Leishmaniasis: clinical syndromes and treatment. QJM 107:7–14

    Article  CAS  PubMed  Google Scholar 

  • Misra P, Sashidhara KV, Singh SP, Kumar A, Gupta R, Chaudhaery SS, Gupta S Sen, Majumder HK, Saxena AK, Dube A (2010) 16alpha-Hydroxycleroda-3,13(14)Z-dien-15,16-olide from Polyalthia longifolia: a safe and orally active antileishmanial agent. Br J Pharmacol 159:1143–1150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mittra B, Saha A, Chowdhury AR, Pal C, Mandal S, Mukhopadhyay S, Bandyopadhyay S, Majumder HK (2000) Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Mol Med 6:527–541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Monge-Maillo B, López-Vélez R (2015) Miltefosine for visceral and cutaneous leishmaniasis: drug characteristics and evidence-based treatment recommendations. Clin Infect Dis 60:1398–1404

    PubMed  Google Scholar 

  • Montrieux E, Perera WH, García M, Maes L, Cos P, Monzote L (2014) In vitro and in vivo activity of major constituents from Pluchea carolinensis against Leishmania amazonensis. Parasitol Res 113:2925–2932

    Article  PubMed  Google Scholar 

  • Monzote L, Pastor J, Scull R, Gille L (2014) Antileishmanial activity of essential oil from Chenopodium ambrosioides and its main components against experimental cutaneous leishmaniasis in BALB/c mice. Phytomedicine 21:1048–1052

    Article  CAS  PubMed  Google Scholar 

  • Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in leishmaniasis. Lancet 366:1561–1577

    Article  CAS  PubMed  Google Scholar 

  • Muzitano MF, Falcão CAB, Cruz EA, Bergonzi MC, Bilia AR, Vincieri FF, Rossi-Bergmann B, Costa SS (2009) Oral metabolism and efficacy of Kalanchoe pinnata flavonoids in a murine model of cutaneous leishmaniasis. Planta Med 75:307–311

    Article  CAS  PubMed  Google Scholar 

  • Nagle AS, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJN, Chennamaneni NK, Pendem N, Buckner FS, Gelb MH, Molteni V (2014) Recent developments in drug discovery for leishmaniasis and human african Trypanosomiasis. Chem Rev 114:11305–11347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Otranto D, Dantas-Torres F (2013) The prevention of canine leishmaniasis and its impact on public health. Trends Parasitol 29:339–345

    Article  PubMed  Google Scholar 

  • Poddar A, Banerjee A, Ghanta S, Chattopadhyay S (2008) In vivo efficacy of calceolarioside A against experimental visceral leishmaniasis. Planta Med 74:503–508

    Article  CAS  PubMed  Google Scholar 

  • Ready P (2014) Epidemiology of visceral leishmaniasis. Clin, Epidemiol, p 147

    Google Scholar 

  • Ready PD (2013) Biology of phlebotomine sand flies as vectors of disease agents. Annu Rev Entomol 58:227–250

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Mukherjee T, Chowdhury S, Mishra A, Chowdhury SR, Jaisankar P, Mukhopadhyay S, Majumder HK (2013) The lignan glycosides lyoniside and saracoside poison the unusual type IB topoisomerase of Leishmania donovani and kill the parasite both in vitro and in vivo. Biochem Pharmacol 86:1673–1687

    Article  CAS  PubMed  Google Scholar 

  • Sen G, Mandal S, Saha Roy S, Mukhopadhyay S, Biswas T (2005) Therapeutic use of quercetin in the control of infection and anemia associated with visceral leishmaniasis. Free Radic Biol Med 38:1257–1264

    Article  CAS  PubMed  Google Scholar 

  • Singh S (2014) Changing trends in the epidemiology, clinical presentation, and diagnosis of Leishmania–HIV co-infection in India. Int J Infect Dis 29:103–112

    Article  PubMed  Google Scholar 

  • Tasdemir D, Kaiser M, Brun R, Yardley V, Schmidt TJ, Tosun F, Rüedi P (2006) Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob Agents Chemother 50:1352–1364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tempone AG, Martins de Oliveira C, Berlinck RGS (2011) Current approaches to discover marine antileishmanial natural products. Planta Med 77:572–585

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Henrique G. Lago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lago, J.H.G., Barrosa, K.H., Borborema, S.E.T., Tempone, A.G. (2018). Natural Products from Plants as Potential Leads as Novel Antileishmanials: A Preclinical Review. In: Mérillon, JM., Riviere, C. (eds) Natural Antimicrobial Agents. Sustainable Development and Biodiversity, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-67045-4_8

Download citation

Publish with us

Policies and ethics