Skip to main content

Piecewise-Linear (PWL) Canard Dynamics

Simplifying Singular Perturbation Theory in the Canard Regime Using Piecewise-linear Systems

  • Chapter
  • First Online:
Book cover Nonlinear Systems, Vol. 1

Abstract

In this chapter we gather recent results on piecewise-linear (PWL) slow-fast dynamical systems in the canard regime. By focusing on minimal systems in \(\mathbb {R}^2\) (one slow and one fast variables) and \(\mathbb {R}^3\) (two slow and one fast variables), we prove the existence of (maximal) canard solutions and show that the main salient features from smooth systems is preserved. We also highlight how the PWL setup carries a level of simplification of singular perturbation theory in the canard regime, which makes it more amenable to present it to various audiences at an introductory level. Finally, we present a PWL version of Fenichel theorems about slow manifolds, which are valid in the normally hyperbolic regime and in any dimension, which also offers a simplified framework for such persistence results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arima, N., Okazaki, H., Nakano, H.: A generation mechanism of canards in a piecewise linear system. IEICE T. Fundam. Electr. 80, 447–453 (1997)

    Google Scholar 

  2. Benoît, E.: Canards et enlacements. Publications Mathématiques de l’IHÉS 72, 63–91 (1990)

    Article  MathSciNet  Google Scholar 

  3. Benoît, E., Callot, J.L., Diener, F., Diener, M.: Chasse au canard. Collect. Math. 32, 37–119 (1981)

    MathSciNet  MATH  Google Scholar 

  4. Brøns, M., Krupa, M., Wechselberger, M.: Mixed mode oscillations due to the generalized canard phenomenon. Fields Inst. Commun. 49, 39–63 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Desroches, M., Fernández-García, S., Krupa, M.: Canards in a minimal piecewise-linear square-wave burster. Chaos 26(7), 073,111 (2016)

    Article  MathSciNet  Google Scholar 

  6. Desroches, M., Guillamon, A., Ponce, E., Prohens, R., Rodrigues, S., Teruel, A.E.: Canards, folded nodes, and mixed-mode oscillations in piecewise-linear slow-fast systems. SIAM Rev. 58(4), 653–691 (2016)

    Article  MathSciNet  Google Scholar 

  7. Desroches, M., Kaper, T.J., Krupa, M.: Mixed-mode bursting oscillations: dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster. Chaos 23(4), 046,106 (2013)

    Article  MathSciNet  Google Scholar 

  8. Desroches, M., Guckenheimer, J.M., Krauskopf, B., Kuehn, C., Osinga, H.M., Wechselberger, M.: Mixed-mode oscillations with multiple time scales. SIAM Rev. 54, 211–288 (2012)

    Article  MathSciNet  Google Scholar 

  9. Diener, M.: The canard unchained or how fast/slow dynamical systems bifurcate. The Math. Intell. 6(3), 38–49 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  10. Dumortier, F., Roussarie, R.: Canards cycles and center manifolds. Mem. Am. Math. Soc. 557, 1131–1162 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  12. Fernández-García, S., Desroches, M., Krupa, M., Clément, F.: A multiple time scale coupling of piecewise linear oscillators. application to a neuroendocrine system. SIAM J. Appl. Dyn. Syst. 14(2), 643–673 (2015)

    Article  MathSciNet  Google Scholar 

  13. Fernández-García, S., Desroches, M., Krupa, M., Teruel, A.E.: Canard solutions in planar piecewise linear systems with three zones. Dyn. Syst. A.I.J. 31, 173–197 (2016)

    Article  MathSciNet  Google Scholar 

  14. Fernández-García, S., Krupa, M., Clément, F.: Mixed-mode oscillations in a piecewise linear system with multiple time scale coupling. Phys. D 332, 9–22 (2016)

    Article  MathSciNet  Google Scholar 

  15. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Article  ADS  Google Scholar 

  16. Freire, E., Ponce E., Rodrigo. F., Torres, F.: Bifurcation sets of continuous piecewise linear systems with two zones. J. Bifur. Chaos Appl. Sci. Eng. 8, 2073–2097 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  17. Freire, E., Ponce, E., Torres, F.: Hopf-like bifurcations in planar piecewise linear systems. Publ. Mat. 41, 135–148 (1997)

    Article  MathSciNet  Google Scholar 

  18. Jones, C.K.R.T.: Geometric Singular Perturbation Theory. Springer, Berlin, Heidelberg (1995)

    Book  Google Scholar 

  19. Kaper, T.: Systems theory for singular perturbation problems. In: O’Malley, R.E. Jr., Cronin, J. (eds.) Analyzing Multiscale Phenomena Using Singular Perturbation Methods; Proceedings of Symposia in Applied Mathematics, vol. 56, pp. 8–132; Am. Math. Soc. (1999)

    Google Scholar 

  20. Kramer, M.A., Traub, R.D., Kopell, N.J.: New dynamics in cerebellar purkinje cells: torus canards. Phys. Rev. Lett. 101(6), 068,103 (2008)

    Google Scholar 

  21. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions. SIAM J. Math. Anal. 33, 286–314 (2001)

    Article  MathSciNet  Google Scholar 

  22. Krupa, M., Szmolyan, P.: Relaxation oscillations and canard explosion. J. Differ. Equ. 174, 312–368 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  23. McKean, H.P.: Nagumo’s equation. Adv. Math. 4(3), 209–223 (1970)

    Article  MathSciNet  Google Scholar 

  24. Mitry, J., Wechselberger, M.: Folded saddles and faux canards. SIAM J. Appl. Dyn. Syst. 16, 546–596 (2017)

    Article  MathSciNet  Google Scholar 

  25. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Article  Google Scholar 

  26. Prohens, R., Teruel, A.E.: Canard trajectories in 3d piecewise linear systems. Discret. Contin. Dyn. Syst. 33(3), 4595–4611 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Prohens, R., Teruel, A.E., Vich, C.: Slow-fast n-dimensional piecewise-linear differential systems. J. Differ. Equ. 260, 1865–1892 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. Wechselberger, M.: Existence and bifurcation of canards in \({\mathbb{R}}^3\) in the case of a folded node. SIAM J. Appl. Dyn. Syst. 4, 101–139 (2005)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

SFG is supported by the University of Seville VPPI-US and partially supported by Proyectos de Excelencia de la Junta de Andalucía under Grant No. P12-FQM-1658 and Ministerio de Economía y Competitividad under Grant No. MTM2015-65608-P. RP and AET are supported by the Spanish Ministerio de Economía y Competitividad through project MTM2014-54275-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Desroches .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Desroches, M., Fernández-García, S., Krupa, M., Prohens, R., Teruel, A.E. (2018). Piecewise-Linear (PWL) Canard Dynamics. In: Carmona, V., Cuevas-Maraver, J., Fernández-Sánchez, F., García- Medina, E. (eds) Nonlinear Systems, Vol. 1. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-66766-9_3

Download citation

Publish with us

Policies and ethics