Skip to main content

Simulating Laser Dynamics with Cellular Automata

  • Chapter
  • First Online:

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The long-established approach to study laser dynamics uses a set of differential equations known as the laser rate equations. In this work we present an overview of an alternative model based on a cellular automaton (CA). We also present a panorama of different variants of the model: the original one, designed to simulate general laser dynamics; an additional one, that was proposed to simulate pulsed pumped lasers; and finally a new model to simulate lasers that exhibit antiphase dynamics, which is proposed here. Despite its simplicity, the CA model reproduces qualitatively the phenomenology encountered in many real laser systems: (i) the existence of a threshold value of the pumping rate \(R_t\); (ii) the exact dependence of \(R_t\) on the life times of the photons and the inversion population; (iii) the two main laser regimes: a steady state and an oscillatory one.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bandini, S., Pavesi, G.: Simulation of vegetable populations dynamics based on cellular automata (2002)

    Google Scholar 

  2. Brydon, D., Pearson, J., Marder, M.: Solving stiff differential equations with the method of patches. J. Comput. Phys. 144, 280–298 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  3. Byrne, G.D., Hindmarsh, A.C.: Stiff ODE solvers: a review of current and coming attractions. J. Comput. Phys. 70, 1–62 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  4. Cabrera, E., Calderón, O.G., Guerra, J.: Experimental evidence of antiphase population dynamics in lasers. Phys. Rev. A 72, 043824 (2005)

    Google Scholar 

  5. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press (1998)

    Google Scholar 

  6. Chopard, B., Luthi, P., Droz, M.: Reaction-diffusion cellular automata model for the formation of liesegang patterns. Phys. Rev. Lett. 72, 1284–1387 (1994)

    Article  ADS  Google Scholar 

  7. Creutz, M.: Deterministic Ising dynamics (1986)

    Article  ADS  Google Scholar 

  8. Dinand, M., Schuette, C.: Theoretical modeling of relaxation oscillations in Er-doped waveguide lasers. J. Lightwave Technol. 13(1), 14–23 (1995)

    Article  ADS  Google Scholar 

  9. Guisado, J.L., Jiménez-Morales, F., Guerra, J.M.: Cellular automaton model for the simulation of laser dynamics. Phys. Rev. E 67(6), 066708 (2003)

    Google Scholar 

  10. Guisado, J.L., Jiménez-Morales, F., Guerra, J.M.: Simulation of the Dynamics of Pulsed Pumped. In: Lecture Notes in Computer Science, vol. 3305, pp. 278–285 (2004)

    Google Scholar 

  11. Guisado, J.L., Jiménez-Morales, F., Guerra, J.M.: Application of Shannon’s entropy to classify emergent behaviors in a simulation of laser dynamics. Math. Comput. Model. 42(7–8), 847–854 (2005)

    Article  Google Scholar 

  12. Ilachinski, A.: Cellular Automata: a discrete universe. World Scientific (2001)

    Google Scholar 

  13. Lega, J., Moloney, J.V., Newell, A.C.: Universal description of laser dynamics near threshold. Phys. D 83(4), 478–498 (1995)

    Article  Google Scholar 

  14. Miranker, W.L.: Numerical Methods for Stiff Equations and Singular Perturbation Problems: and singular perturbation problems. D. Reidel—Springer, Dordrecht, The Netherlands (1981)

    Google Scholar 

  15. von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966)

    Google Scholar 

  16. Qiu, G., Kandhai, D., Sloot, P.M.A.: Understanding the complex dynamics of stock markets through cellular automata. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 75(4) (2007)

    Google Scholar 

  17. Siegman, A.: Lasers. Unversity Science Books (1986)

    Google Scholar 

  18. Sloot, P., Chen, F., Boucher, C.: Cellular Automata Model of Drug Therapy for HIV Infection (2002)

    Google Scholar 

  19. Subrata, R., Zomaya, A.Y.: Evolving cellular automata for location management in mobile computing networks. IEEE Trans. Parallel Distrib. Syst. 14(1), 13–26 (2003)

    Article  Google Scholar 

  20. Svelto, O.: Principles of Lasers. Plenum Press (1989)

    Google Scholar 

  21. Veasey, D.L., Gary, J.M., Amin, J., Aust, J.A.: Time-dependent modeling of erbium-doped waveguide lasers in lithiumniobate pumped at 980 and 1480 nm. IEEE J. Quantum Electron. 33(10), 1647–1662 (1997)

    Article  ADS  Google Scholar 

  22. Wolfram, S.: Cellular Automata and Complexity: collected papers. Addison-Wesley (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Jiménez-Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiménez-Morales, F., Guisado, J.L., Guerra, J.M. (2018). Simulating Laser Dynamics with Cellular Automata. In: Carmona, V., Cuevas-Maraver, J., Fernández-Sánchez, F., García- Medina, E. (eds) Nonlinear Systems, Vol. 1. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-66766-9_14

Download citation

Publish with us

Policies and ethics