Skip to main content

Proprioception After Spine Injury and Surgery

  • Chapter
  • First Online:

Abstract

Proprioception is one of the components of somatosensory system and is essential for postural stabilization, movement acuity, and balance. Spinal proprioception has a specific significance on postural control due to cervical proprioception’s unique interactions with visio-vestibular system, and trunk’s role on dynamic and static stabilization of the body. Spinal proprioception can be disrupted as a result of trauma, pain disorders, stenosis, deformities, and/or spinal surgery.

Clinical assessment of proprioception includes specific measurements of kinesthesia, joint position sense, and force sense, as well as nonspecific measurements of the balance of the body.

Altered proprioception leads to poor balance, decrease in motor precision, increased risk of trauma, impaired head and eye movement control, and in the long term musculoskeletal disturbances. Management of proprioceptive disturbances includes physical therapies such as joint position exercises, oculo-cervical programming, and vibration training. Although spinal surgery is considered an etiological factor in proprioception disturbances, surgical restoration of spinal proprioception is also a subject currently under investigation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Roijezon U, Clark NC, Treleaven J. Proprioception in musculoskeletal rehabilitation. Part 1: basic science and principles of assessment and clinical interventions. Man Ther. 2015;20(3):368–77.

    Article  PubMed  Google Scholar 

  2. Parkhurst TM, Burnett CN. Injury and proprioception in the lower back. J Orthop Sports Phys Ther. 1994;19(5):282–95.

    Article  CAS  PubMed  Google Scholar 

  3. Karakaya MG. Spine and proprioception. In: Kaya D. Ed., Proprioception: The forgetten sixth sense. USA: OMICS Group eBooks; 2016. pp. 89–105. ISBN: 978-1-63278-018-8.

    Google Scholar 

  4. Assaiante C, Barlaam F, Cignetti F, Vaugoyeau M. Body schema building during childhood and adolescence: a neurosensory approach. Neurophysiol Clin. 2014;44(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  5. Le Berre M, Guyot MA, Agnani O, Bourdeauducq I, Versyp MC, Donze C, et al. Clinical balance tests, proprioceptive system and adolescent idiopathic scoliosis. Eur Spine J. 2017;26(6):1638–44.

    Article  PubMed  Google Scholar 

  6. Bronstein AM. Multisensory integration in balance control. Handbook Clin Neurol. 2016;137:57–66.

    Article  CAS  Google Scholar 

  7. Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev. 2012;92(4):1651–97.

    Article  CAS  PubMed  Google Scholar 

  8. Liu JX, Thornell LE, Pedrosa-Domellof F. Muscle spindles in the deep muscles of the human neck: a morphological and immunocytochemical study. J Histochem Cytochem. 2003;51(2):175–86.

    Article  CAS  PubMed  Google Scholar 

  9. Sojka P, Johansson H, Sjölander P, Lorentzon R, Djupsjöbacka M. Fusimotor neurones can be reflexly influenced by activity in receptor afferents from the posterior cruciate ligament. Brain Res. 1989;483(1):177–83.

    Article  CAS  PubMed  Google Scholar 

  10. Needle AR, Charles BBS, Farquhar WB, Thomas SJ, Rose WC, Kaminski TW. Muscle spindle traffic in functionally unstable ankles during ligamentous stress. J Athl Train. 2013;48(2):192–202.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cordo PJ, Horn JL, Kunster D, Cherry A, Bratt A, Gurfinkel V. Contributions of skin and muscle afferent input to movement sense in the human hand. J Neurophysiol. 2011;105(4):1879–88.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Barbieri G, Gissot AS, Fouque F, Casillas JM, Pozzo T, Perennou D. Does proprioception contribute to the sense of verticality? Exp Brain Res. 2008;185(4):545–52.

    Article  PubMed  Google Scholar 

  13. von Gierke HE, Parker DE. Differences in otolith and abdominal viscera graviceptor dynamics: implications for motion sickness and perceived body position. Aviat Space Environ Med. 1994;65(8):747–51.

    Google Scholar 

  14. McLain RF, Raiszadeh K. Mechanoreceptor endings of the cervical, thoracic, and lumbar spine. Iowa Orthop J. 1995;15:147–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hobbs AJ, Adams RD, Shirley D, Hillier TM. Comparison of lumbar proprioception as measured in unrestrained standing in individuals with disc replacement, with low back pain, and without low back pain. J Orthop Sports Phys Ther. 2010;40(7):439–46.

    Article  PubMed  Google Scholar 

  16. Holm S, Indahl A, Solomonow M. Sensorimotor control of the spine. J Electromyogr Kinesiol. 2002;12(3):219–34.

    Article  PubMed  Google Scholar 

  17. Stubbs M, Harris M, Solomonow M, Zhou B, Lu Y, Baratta RV. Ligamento-muscular protective reflex in the lumbar spine of the feline. J Electromyogr Kinesiol. 1998;8(4):197–204.

    Article  CAS  PubMed  Google Scholar 

  18. Allison GT, Fukushima S. Estimating three-dimensional spinal repositioning error: the impact of range, posture, and number of trials. Spine (Phila Pa 1976). 2003;28(22):2510–6.

    Article  Google Scholar 

  19. Lee AS, Cholewicki J, Reeves NP, Zazulak BT, Mysliwiec LW. Comparison of trunk proprioception between patients with low back pain and healthy controls. Arch Phys Med Rehabil. 2010;91(9):1327–31.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Clark NC, Roijezon U, Treleaven J. Proprioception in musculoskeletal rehabilitation. Part 2: clinical assessment and intervention. Man Ther. 2015;20(3):378–87.

    Article  PubMed  Google Scholar 

  21. Guyot MA, Agnani O, Peyrodie L, Samantha D, Donze C, Catanzariti JF. Cervicocephalic relocation test to evaluate cervical proprioception in adolescent idiopathic scoliosis. Eur Spine J. 2016;25(10):3130–6.

    Article  PubMed  Google Scholar 

  22. Mallau S, Bollini G, Jouve JL, Assaiante C. Locomotor skills and balance strategies in adolescents idiopathic scoliosis. Spine (Phila Pa 1976). 2007;32(1):E14–22.

    Article  Google Scholar 

  23. Revel M, Andre-Deshays C, Minguet M. Cervicocephalic kinesthetic sensibility in patients with cervical pain. Arch Phys Med Rehabil. 1991;72(5):288–91.

    CAS  PubMed  Google Scholar 

  24. Pinsault N, Fleury A, Virone G, Bouvier B, Vaillant J, Vuillerme N. Test-retest reliability of cervicocephalic relocation test to neutral head position. Physiother Theory Pract. 2008;24(5):380–91.

    Article  PubMed  Google Scholar 

  25. Treleaven J. Sensorimotor disturbances in neck disorders affecting postural stability, head and eye movement control. Man Ther. 2008;13(1):2–11.

    Article  PubMed  Google Scholar 

  26. Boucher JA, Roy N, Preuss R, Lariviere C. The effect of two lumbar belt designs on trunk repositioning sense in people with and without low back pain. Ann Phys Rehabil Med. 2017;60(5):306–11.

    Article  PubMed  Google Scholar 

  27. Boucher JA, Preuss R, Henry SM, Dumas JP, Lariviere C. The effects of an 8-week stabilization exercise program on lumbar movement sense in patients with low back pain. BMC Musculoskelet Disord. 2016;17:23.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kristjansson E, Hardardottir L, Asmundardottir M, Gudmundsson K. A new clinical test for cervicocephalic kinesthetic sensibility: “the fly”. Arch Phys Med Rehabil. 2004;85(3):490–5.

    Article  PubMed  Google Scholar 

  29. Jull GA. Deep cervical flexor muscle dysfunction in whiplash. J Musculoskelet Pain. 2010;8(1–2):143–54.

    Google Scholar 

  30. Honaker JA, Boismier TE, Shepard NP, Shepard NT. Fukuda stepping test: sensitivity and specificity. J Am Acad Audiol. 2009;20(5):311–4.

    Article  PubMed  Google Scholar 

  31. Courtine G, De Nunzio AM, Schmid M, Beretta MV, Schieppati M. Stance- and locomotion-dependent processing of vibration-induced proprioceptive inflow from multiple muscles in humans. J Neurophysiol. 2007;97(1):772–9.

    Article  PubMed  Google Scholar 

  32. Simoneau M, Richer N, Mercier P, Allard P, Teasdale N. Sensory deprivation and balance control in idiopathic scoliosis adolescent. Exp Brain Res. 2006;170(4):576–82.

    Article  PubMed  Google Scholar 

  33. Kaariainen T, Taimela S, Aalto T, Kroger H, Herno A, Turunen V, et al. The effect of decompressive surgery on lumbar paraspinal and biceps brachii muscle function and movement perception in lumbar spinal stenosis: a 2-year follow-up. Eur Spine J. 2016;25(3):789–94.

    Article  PubMed  Google Scholar 

  34. Alghadir A, Zafar H, Iqbal Z, Al-Eisa E. Effect of sitting postures and shoulder position on the cervicocephalic kinesthesia in healthy young males. Somatosens Mot Res. 2016;33(2):93–8.

    Article  PubMed  Google Scholar 

  35. Malmstrom EM, Westergren H, Fransson PA, Karlberg M, Magnusson M. Experimentally induced deep cervical muscle pain distorts head on trunk orientation. Eur J Appl Physiol. 2013;113(10):2487–99.

    Article  PubMed  Google Scholar 

  36. Claeys K, Brumagne S, Dankaerts W, Kiers H, Janssens L. Decreased variability in postural control strategies in young people with non-specific low back pain is associated with altered proprioceptive reweighting. Eur J Appl Physiol. 2011;111(1):115–23.

    Article  PubMed  Google Scholar 

  37. Brumagne S, Cordo P, Lysens R, Verschueren S, Swinnen S. The role of paraspinal muscle spindles in lumbosacral position sense in individuals with and without low back pain. Spine (Phila Pa 1976). 2000;25(8):989–94.

    Article  CAS  Google Scholar 

  38. Ozcan-Eksi EE, Yagci I, Erkal H, Demir-Deviren S. Paraspinal muscle denervation and balance impairment in lumbar spinal stenosis. Muscle Nerve. 2016;53(3):422–30.

    Article  PubMed  Google Scholar 

  39. Leinonen V, Maatta S, Taimela S, Herno A, Kankaanpaa M, Partanen J, et al. Impaired lumbar movement perception in association with postural stability and motor- and somatosensory-evoked potentials in lumbar spinal stenosis. Spine (Phila Pa 1976). 2002;27(9):975–83.

    Article  Google Scholar 

  40. Oddsdottir GL, Kristjansson E. Two different courses of impaired cervical kinaesthesia following a whiplash injury. A one-year prospective study. Man Ther. 2012;17(1):60–5.

    Article  PubMed  Google Scholar 

  41. Hides JA, Franettovich Smith MM, Mendis MD, Smith NA, Cooper AJ, Treleaven J, et al. A prospective investigation of changes in the sensorimotor system following sports concussion. An exploratory study. Musculoskelet Sci Pract. 2017;29:7–19.

    Article  PubMed  Google Scholar 

  42. Kristjansson E, Bjornsdottir SV, Oddsdottir GL. The long-term course of deficient cervical kinaesthesia following a whiplash injury has a tendency to seek a physiological homeostasis. A prospective study. Man Ther. 2016;22:196–201.

    Article  PubMed  Google Scholar 

  43. Barrack RL, Wyatt MP, Whitecloud TS, Burke SW, Roberts JM, Brinker MR. Vibratory hypersensitivity in idiopathic scoliosis. J Pediatr Orthop. 1998;8:389–95.

    Article  Google Scholar 

  44. Assaiante C, Mallau S, Jouve JL, Bollini G, Vaugoyeau M. Do adolescent idiopathic scoliosis [AIS] neglect proprioceptive information in sensory integration of postural control? PLoS One. 2012;7(7):e40646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Janssens L, Brumagne S, Claeys K, Pijnenburg M, Goossens N, Rummens S, et al. Proprioceptive use and sit-to-stand-to-sit after lumbar microdiscectomy: the effect of surgical approach and early physiotherapy. Clin Biomech (Bristol, Avon). 2016;32:40–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burcu Akpunarli M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akpunarli, B., Yilgor, C., Alanay, A. (2018). Proprioception After Spine Injury and Surgery. In: Kaya, D., Yosmaoglu, B., Doral, M. (eds) Proprioception in Orthopaedics, Sports Medicine and Rehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-319-66640-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66640-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66639-6

  • Online ISBN: 978-3-319-66640-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics