Skip to main content

4D Flow Imaging in Aortic Disease

  • Chapter
  • First Online:
  • 1040 Accesses

Abstract

The flow hemodynamics in the aorta plays a critical role in the formation and development of aortic disease. 4D flow imaging using phase-contrast magnetic resonance (4D PC-MRI) has been developed and performed in both research and clinical care to study the blood flow in the heart and the great vessels. Compared to 2D flow imaging, 4D PC-MRI allows retrospective visualization and quantification of the time-varying 3D blood flow pattern in the 3D volume of the aorta, and provides more comprehensive visual and quantitative tools to study the complex relationship between flow hemodynamics and aortic pathophysiology in the development of aortic disease. In this chapter, we will describe the image acquisition technique, the image pre-processing method, the data visualization technique, and the quantitative hemodynamic markers of the 4D flow PC-MRI in the aorta. This chapter will also give an overview of the potential clinical applications of the flow visualization and the flow quantifications derived from 4D flow imaging for aortic disease.

This is a preview of subscription content, log in via an institution.

References

  1. Richter Y, Edelman ER. Cardiology is flow. Circulation. 2006;113(23):2679–82.

    Article  Google Scholar 

  2. Cheng C, Tempel D, van Haperen R, et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation. 2006;113(23):2744–53.

    Article  Google Scholar 

  3. Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M. 4D flow imaging with MRI. Cardiovasc Diagn Ther. 2014;4(2):173–92.

    PubMed  PubMed Central  Google Scholar 

  4. Eriksson J, Bolger AF, Ebbers T, Carlhäll C-J. Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2012;14(5):417–24.

    Article  Google Scholar 

  5. Dyverfeldt P, Bissell M, Barker AJ, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson. 2015;17:72.

    Article  Google Scholar 

  6. Hess AT, Bissell MM, Ntusi NAB, et al. Aortic 4D flow: quantification of signal-to-noise ratio as a function of field strength and contrast enhancement for 1.5T, 3T, and 7T. Magn Reson Med. 2015;73(5):1864–71.

    Article  Google Scholar 

  7. Walker PG, Cranney GB, Scheidegger MB, Waseleski G, Pohost GM, Yoganathan AP. Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging. 1993;3(3):521–30.

    Article  CAS  Google Scholar 

  8. Sengupta PP, Pedrizzetti G, Kilner PJ, et al. Emerging trends in CV flow visualization. JACC Cardiovasc Imaging. 2012;5(3):305–16.

    Article  Google Scholar 

  9. Clough RE, Waltham M, Giese D, Taylor PR, Schaeffter T. A new imaging method for assessment of aortic dissection using four-dimensional phase contrast magnetic resonance imaging. J Vasc Surg. 2012;55(4):914–23.

    Article  Google Scholar 

  10. Markl M, Wallis W, Harloff A. Reproducibility of flow and wall shear stress analysis using flow-sensitive four-dimensional MRI. J Magn Reson Imaging. 2011;33(4):988–94.

    Article  Google Scholar 

  11. Bissell MM, Hess AT, Biasiolli L, et al. Aortic dilation in bicuspid aortic valve disease: flow pattern is a major contributor and differs with valve fusion type. Circ Cardiovasc Imaging. 2013;6(4):499–507.

    Article  Google Scholar 

  12. Westenberg JJM, Scholte AJHA, Vaskova Z, et al. Age-related and regional changes of aortic stiffness in the Marfan syndrome: assessment with velocity-encoded MRI. J Magn Reson Imaging. 2011;34(3):526–31.

    Article  Google Scholar 

  13. Allen BD, Barker AJ, Carr JC, Silverberg RA, Markl M. Time-resolved three-dimensional phase contrast MRI evaluation of bicuspid aortic valve and coarctation of the aorta. Eur Heart J Cardiovasc Imaging. 2013;14(4):399.

    Article  Google Scholar 

  14. Frydrychowicz A, Markl M, Hirtler D, et al. Aortic hemodynamics in patients with and without repair of aortic coarctation: in vivo analysis by 4D flow-sensitive magnetic resonance imaging. Investig Radiol. 2011;46(5):317–25.

    Google Scholar 

  15. Dyverfeldt P, Hope MD, Tseng EE, Saloner D. Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis. JACC Cardiovasc Imaging. 2013;6(1):64–71.

    Article  Google Scholar 

  16. Barker AJ, van Ooij P, Bandi K, et al. Viscous energy loss in the presence of abnormal aortic flow. Magn Reson Med. 2014;72(3):620–8.

    Article  Google Scholar 

  17. Yang GZ, Kilner PJ, Wood NB, Underwood SR, Firmin DN. Computation of flow pressure fields from magnetic resonance velocity mapping. Magn Reson Med. 1996;36(4):520–6.

    Article  CAS  Google Scholar 

  18. Sigovan M, Hope MD, Dyverfeldt P, Saloner D. Comparison of four-dimensional flow parameters for quantification of flow eccentricity in the ascending aorta. J Magn Reson Imaging. 2011;34(5):1226–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Qian Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qian, Z., Zhou, X., Vannan, M. (2018). 4D Flow Imaging in Aortic Disease. In: Fattouch, K., Lancellotti, P., Vannan, M., Speziale, G. (eds) Advances in Treatments for Aortic Valve and Root Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-66483-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66483-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66482-8

  • Online ISBN: 978-3-319-66483-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics