Skip to main content

Calibrating Bone Durability

  • Chapter
  • First Online:
An Introduction to Zooarchaeology
  • 72k Accesses

Abstract

This chapter explores the disparate durabilities of different skeletal elements in the face of destructive forces. Such attrition differentially affects element survival across the skeleton and thus at least potentially inserts a confounding effect into any analysis of human selectivity based upon nutritional utility. The chapter describes efforts to calibrate variations in skeletal element durability over the last 40 years, focusing on the use of biomedical equipment that measure bone mineral densities. It reviews pioneering studies of bone “volume densities” using photon densitometry and its application to diverse taxa. It summarizes questions emerging about bone mineral estimates drawn this two-dimensionally based technique and discusses the later application of CTscan technology to calibrating bone mineral density, as well as sources of divergence in these two techniques’ measurements. This chapter also explains how zooarchaeologists have juxtaposed bone durability measures with nutritional utility indices to explore the dominant processes involved in forming archaeofaunal accumulations. The chapter discusses simulation study of the potential consequences of limiting assemblage analysis to fewer, high-durability skeletal elements and ends with a consideration of element frequencies in relation to other proxies for modifying processes, such as surface modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bar-Oz, G., & Dayan, T. (2007). FOCUS: On the use of the petrous bone for estimating cranial abundance in fossil assemblages. Journal of Archaeological Science, 34(9), 1356–1360.

    Article  Google Scholar 

  • Behrensmeyer, A. K. (1975). The taphonomy and paleoecology of Plio-Pleistocene vertebrate assemblages east of Lake Rudolph, Kenya. Bulletin of the Museum of Comparative Zoology, 146, 473–578.

    Google Scholar 

  • Binford, L. R., & Bertram, J. (1977). Bone frequencies -- and attritional processes. In L. R. Binford (Ed.), For theory building in archaeology: Essays on faunal remains, aquatic resources, spatial analysis, and systemic modeling (pp. 77–153). New York: Academic Press.

    Google Scholar 

  • Binford, L. R. (1981). Bones: Ancient Men and Modern Myths. New York: Academic Press.

    Google Scholar 

  • Blumenschine, R. J. (1988). An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. Journal of Archaeological Science, 15(5), 483–502.

    Article  Google Scholar 

  • Borrero, L. A. (1990). Fuego-Patagonian bone assemblages and the problem of communal guanaco hunting. In L. B. Davis, & B. O. K. Reeves (Eds.), Hunters of the recent past (pp. 373–399). London: Unwin Hyman.

    Google Scholar 

  • Brain, C. K. (1981). The hunters or the hunted? An introduction to South African cave taphonomy. Chicago: University of Chicago Press.

    Google Scholar 

  • Capaldo, S. D. (1998). Simulating the formation of dual patterned archaeofaunal assemblages with experimental control samples. Journal of Archaeological Science, 25(4), 311–330.

    Google Scholar 

  • Cleghorn, N., & Marean, C. W. (2004). Distinguishing selective transport from in situ attrition: A critical review of analytical approaches. Journal of Taphonomy, 2(2), 43–67.

    Google Scholar 

  • Cruz, I., & Elkin, D. (2003). Structural bone density of the lesser rhea (Pterocnemia pennata) (Aves: Rheidae). Taphonomic and archaeological implications. Journal of Archaeological Science, 30(1), 37–44.

    Google Scholar 

  • Dirrigl, F. J., Jr. (2001). Bone mineral density of wild turkey (Meleagris gallopavo) skeletal elements and its effect on differential survivorship. Journal of Archaeological Science, 28(8), 817–832.

    Google Scholar 

  • Egeland, A. G., Egeland, C. P., & Bunn, H. T. (2008). Taphonomic analysis of a modern spotted hyena (Crocuta crocuta) den from Nairobi, Kenya. Journal of Taphonomy, 6(3-4), 275–299.

    Google Scholar 

  • Elkin, D. C. (1995). Volume density of South American camelid skeletal parts. International Journal of Osteoarchaeology, 5(1), 29–37.

    Article  Google Scholar 

  • Emerson, A. M. (1990). Archaeological implications of variability in the economic anatomy of Bison bison. Doctoral dissertation, Washington State University, Pullman.

    Google Scholar 

  • Faith, J. T., & Gordon, A. D. (2007). Skeletal element abundances in archaeofaunal assemblages: Economic utility, sample size, and assessment of carcass transport strategies. Journal of Archaeological Science, 34(6), 872–882.

    Article  Google Scholar 

  • Galloway, A., Willey, P., & Snyder, L. (1996). Human bone mineral densities and survival of bone elements: A contemporary sample. In W. D. Haglund & M. H. Sorg (Eds.), Forensic taphonomy: The postmortem fate of human remains (pp. 295–317). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Grayson, D. K. (1988). Danger Cave, Last Supper Cave, and Hanging Rock Shelter: The faunas (American Museum of Natural History Anthropological Papers, Vol. 66(1)). New York: American Museum of Natural History.

    Google Scholar 

  • Guthrie, R. D. (1967). Differential preservation and recovery of Pleistocene large mammal remains in Alaska. Journal of Paleontology, 41(1), 243–246.

    Google Scholar 

  • Ioannidou, E. (2003). Taphonomy of animal bones: Species, sex, age and breed variability of sheep, cattle and pig bone density. Journal of Archaeological Science, 30(3), 355–365.

    Article  Google Scholar 

  • Janzen, A., & Cleghorn, N. (2010). Effects of hyena ravaging on skeletal elements of large prey. Paper presented at the Society for American Archaeology, 75th annual meeting, St. Louis, MO,

    Google Scholar 

  • Kreutzer, L. A. (1992). Bison and deer bone mineral densities: Comparisons and implications for the interpretation of archaeological faunas. Journal of Archaeological Science, 19(3), 271–294.

    Article  Google Scholar 

  • Kruuk, H. (1972). The spotted hyena: A study of predation and social behavior. Chicago: University of Chicago Press.

    Google Scholar 

  • Lam, Y. M. (1992). Variability in the behaviour of spotted hyaenas as taphonomic agents. Journal of Archaeological Science, 19(4), 389–406.

    Article  Google Scholar 

  • Lam, Y. M., Chen, X., Marean, C. W., & Frey, C. J. (1998). Bone density and long bone representation in archaeological faunas: Comparing results from CT and photon densitometry. Journal of Archaeological Science, 25(6), 559–570.

    Article  Google Scholar 

  • Lam, Y. M., Chen, X., & Pearson, O. M. (1999). Intertaxonomic variability in patterns of bone density and the differential representation of bovid, cervid, and equid elements in the archaeological record. American Antiquity, 64(2), 343–362.

    Google Scholar 

  • Lam, Y. M., & Pearson, O. M. (2004). The fallibility of bone density values and their use in archaeological analyses. Journal of Taphonomy, 2(2), 99–115.

    Google Scholar 

  • Lam, Y. M., & Pearson, O. M. (2005). Bone density studies and the interpretation of the faunal record. Evolutionary Anthropology: Issues, News, and Reviews, 14(3), 99–108.

    Article  Google Scholar 

  • Lam, Y. M., Pearson, O. M., Marean, C. W., & Chen, X. (2003). Bone density studies in zooarchaeology. Journal of Archaeological Science, 30(12), 1701–1708.

    Article  Google Scholar 

  • Lawrence, D. R. (1968). Taphonomy and information losses in fossil communities. Bulletin of the Geological Society of America, 79(10), 1315–1330.

    Article  Google Scholar 

  • Lupo, K. D. (1995). Hadza bone assemblages and hyena attrition: An ethnographic example of the influence of cooking and mode of discard on the intensity of scavenger ravaging. Journal of Anthropological Archaeology, 14(3), 288–314.

    Article  Google Scholar 

  • Lyman, R. L. (1984). Bone density and differential survivorship in fossil classes. Journal of Anthropological Archaeology, 3(4), 259–299.

    Article  Google Scholar 

  • Lyman, R. L. (1985). Bone frequencies, differential transport, and the MGUI. Journal of Archaeological Science, 12(3), 221–236.

    Article  Google Scholar 

  • Lyman, R. L. (1991). Taphonomic problems with archaeological analyses animal carcass utilization and transport. In B. W. Styles, J. R. Purdue, & W. E. Klippel (Eds.), Beamers, bobwhites, and blue-points: Tributes to the career of Paul W. Parmalee, Scientific Papers (Vol. 23, pp. 125–137). Springfield, IL: Illinois State Museum.

    Google Scholar 

  • Lyman, R. L. (1992). Anatomical considerations of utility curves in zooarchaeology. Journal of Archaeological Science, 19(1), 7–22.

    Article  Google Scholar 

  • Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lyman, R. L. (2008). Quantitative paleozoology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lyman, R. L. (2014). Bone density and bone attrition. In J. T. Pokines & S. A. Symes (Eds.), Manual of forensic taphonomy (pp. 51–72). Boca Raton: CRC Press/Taylor & Francis Group.

    Google Scholar 

  • Lyman, R. L., Houghton, L. E., & Chambers, A. L. (1992). The effect of structural density on marmot skeletal part representation in archaeological sites. Journal of Archaeological Science, 19(5), 557–573.

    Article  Google Scholar 

  • Marean, C. W., Domínguez-Rodrigo, M., & Pickering, T. R. (2004). Skeletal element equifinality in zooarchaeology begins with method: The evolution and status of the “shaft critique.” Journal of Taphonomy, 2(2), 69–98.

    Google Scholar 

  • Marean, C. W., & Spencer, L. M. (1991). Impact of carnivore ravaging on zooarchaeological measures of element abundance. American Antiquity, 56(4), 645–658.

    Google Scholar 

  • Marean, C. W., Spencer, L. M., Blumenschine, R. J., & Capaldo, S. D. (1992). Captive hyaena bone choice and destruction, the schlepp effect and Olduvai archaeofaunas. Journal of Archaeological Science, 19(1), 101–121.

    Google Scholar 

  • Metcalfe, D., & Jones, K. T. (1988). A reconsideration of animal body-part utility indices. American Antiquity, 53(3), 486–504.

    Google Scholar 

  • Morin, E., Ready, E., Boileau, A., Beauval, C., & Coumont, M.-P. (2016). Problems of identification and quantification in archaeozoological analysis, part I: Insights from a blind test. Journal of Archaeological Method and Theory, 1–52. https://doi.org/10.1007/s10816-016-9300-4.

  • O'Connell, J. F., Hawkes, K., & Blurton-Jones, N. (1990). Reanalysis of large mammal body part transport among the Hadza. Journal of Archaeological Science, 17(3), 301–316.

    Google Scholar 

  • Olson, E. C. (Ed.). (1971). Vertebrate paleozoology. New York: Wiley-Interscience.

    Google Scholar 

  • Pavao, B., & Stahl, P. W. (1999). Structural density assays of leporid skeletal elements: Implications for taphonomic, actualistic and archaeological research. Journal of Archaeological Science, 26(1), 53–66.

    Article  Google Scholar 

  • Rogers, A. R. (2000). On equifinality in faunal analysis. American Antiquity, 65(4), 709–723.

    Article  Google Scholar 

  • Speth, J. D. (1983). Bison kills and bone counts: Decision making by ancient hunters. Chicago: University of Chicago Press.

    Google Scholar 

  • Stahl, P. W. (1999). Structural density of domesticated South American camelid skeletal elements and the archaeological investigation of prehistoric Andean ch’arki. Journal of Archaeological Science, 26(11), 1347–1368.

    Google Scholar 

  • Stiner, M. C. (2002). On in situ attrition and vertebrate body part profiles. Journal of Archaeological Science, 29(9), 979–991.

    Google Scholar 

  • Thomas, D. H., & Mayer, D. (1983). Behavioral faunal analysis of selected horizons. In D. H. Thomas (Ed.), The archaeology of Monitor Valley: 2. Gatecliff Shelter (pp. 353–391, Anthropological Papers of the American Museum of Natural History, (Vol. 59, Pt. 1). New York: American Museum of Natural History.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gifford-Gonzalez, D. (2018). Calibrating Bone Durability. In: An Introduction to Zooarchaeology. Springer, Cham. https://doi.org/10.1007/978-3-319-65682-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65682-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65680-9

  • Online ISBN: 978-3-319-65682-3

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics