Skip to main content

Onychomycosis: Laboratory Methods

  • Chapter
  • 2006 Accesses

Abstract

Onychomycosis is caused by dermatophytes, and to a lesser extent by non-dermatophyte moulds (NDMs), and Candida spp. It is important to identify the causative agent of each case of onychomycosis in order to provide the proper management, which includes antifungal therapy, possible physical debridement, and expectant prognosis. This chapter provides guidelines for the proper collection of nail specimens for direct smear and culture. Additionally, various methods for performing direct examinations of clinical material are included, as well as descriptions of both conventional laboratory methods and molecular assays for identifying these fungal species. In cases of treatment failure, it is also important to have a means of determining an infecting organism’s susceptibility to available antifungals. Various susceptibility assays, including broth microdilution and agar diffusion, are compared. Finally, the importance of proper laboratory diagnosis of onychomycosis to the success of clinical trials of novel antifungals is discussed, with an emphasis on the role of negative microscopy in the definition of mycological cure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chi CC, Wang SH, Chou MC. The causative pathogens of onychomycosis in southern Taiwan. Mycoses. 2005;48:413–20.

    Article  Google Scholar 

  2. Foster KW, Ghannoum MA, Elewski BE. Epidemiologic surveillance of cutaneous fungal infection in the United States from 1999 to 2002. J Am Acad Dermatol. 2004;50:748–52.

    Article  Google Scholar 

  3. Havlickova A, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2008;51(S4):2–15.

    Article  Google Scholar 

  4. Raghavendra KR, Yadav D, Kumar A, et al. The nondermatophyte molds: emerging as leading cause of onychomycosis in south-east Rajasthan. Indian Dermatol Online J. 2015;6(2):92–7. https://doi.org/10.4103/2229-5178.153010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crawford F, Young P, Godfrey C, et al. Oral treatments for toenail onychomycosis: a systematic review. Arch Dermatol. 2002;138:811–6.

    Article  CAS  Google Scholar 

  6. Ghannoum M. Azole resistance in dermatophytes: prevalence and mechanism of action. J Am Podiatr Med Assoc. 2016;106(1):79–86.

    Article  Google Scholar 

  7. Odds FC. In Candida albicans, resistance to flucytosine and terbinafine is linked to MAT locus homozygosity and multilocus sequence typing clade 1. FEMS Yeast Res. 2009;9(7):1091–101. https://doi.org/10.1111/j.1567-1364.2009.00577.

    Article  CAS  PubMed  Google Scholar 

  8. Sigurgeirsson B, Olafsson JH, Steinsson JB, et al. Long-term effectiveness of treatment with terbinafine vs itraconazole in onychomycosis: a 5-year blinded prospective follow-up study. Arch Dermatol. 2002;138:353–7.

    Article  CAS  Google Scholar 

  9. Ghannoum M, Isham N, Catalano V. A second look at efficacy criteria for onychomycosis: clinical and mycological cure. Br J Dermatol. 2014;170(1):182–7. https://doi.org/10.1111/bjd.12594.

    Article  CAS  PubMed  Google Scholar 

  10. Bet DL, Dos Reis AL, Di Chiacchio N, et al. Dermoscopy and onychomycosis: guided nail abrasion for mycological samples. An Bras Dermatol. 2015;90(6):904–6.

    Article  Google Scholar 

  11. McGinnis MR. Laboratory handbook of medical mycology. New York: Academic Press; 1980.

    Google Scholar 

  12. Larone D. In medically important fungi: a guide to identification. Washington, DC: ASM Press; 2002.

    Google Scholar 

  13. Elewski BE. Onychomycosis: pathogenesis, diagnosis, and management. Clin Microbiol Rev. 1998;11(3):415–429. 15.

    Article  CAS  Google Scholar 

  14. Murray PR. In manual of clinical microbiology. Washington, DC: ASM Press; 1995.

    Google Scholar 

  15. Souza MN, Ortiz SO, Mello MM, et al. Comparison between four usual methods of identification of Candida species. Rev Inst Med Trop Sao Paulo. 2015;57(4):281–7. https://doi.org/10.1590/S0036-46652015000400002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meletiadis J, Arabatzis M, Bompola M, et al. Comparative evaluation of three commercial identification systems using common and rare bloodstream yeast isolates. J Clin Microbiol. 2011;49(7):2722–7.

    Article  Google Scholar 

  17. Pharaon M, Gari-Toussaint M, Khemis A, et al. Diagnosis and treatment monitoring of toenail onychomycosis by reflectance confocal microscopy: prospective cohort study in 58 patients. J Am Acad Dermatol. 2014;71(1):56–61.

    Article  Google Scholar 

  18. Jeelani S, Ahmed QM, Lanker AM, et al. Histopathological examination of nail clippings using PAS staining (HPE-PAS): gold standard in diagnosis of onychomycosis. Mycoses. 2015;58(1):2732. https://doi.org/10.1111/myc.12251.

    Article  CAS  Google Scholar 

  19. Jung MY, Shim JH, Lee JH, et al. Comparison of diagnostic methods for onychomycosis, and proposal of a diagnostic algorithm. Clin Exp Dermatol. 2015;40(5):479–84. https://doi.org/10.1111/ced.12593.

    Article  CAS  PubMed  Google Scholar 

  20. Shenoy MM, Teerthanath S, Karnaker VK, et al. Comparison of potassium hydroxide mount and mycological culture with histopathologic examination using periodic acid-Schiff staining of the nail clippings in the diagnosis of onychomycosis. Indian J Dermatol Venereol Leprol. 2008;74(3):226–9.

    Article  Google Scholar 

  21. Wilsmann-Theis D, Sareika F, Bieber T, et al. New reasons for histopathological nail-clipping examination in the diagnosis of onychomycosis. J Eur Acad Dermatol Venereol. 2011;25(2):235–7. https://doi.org/10.1111/j.1468-3083.2010.03704.

    Article  CAS  PubMed  Google Scholar 

  22. Mayer E, Izhak OB, Bergman R. Histopathological periodic acid-schiff stains of nail clippings as a second-line diagnostic tool in onychomycosis. Am J Dermatopathol. 2012;34(3):270–3. https://doi.org/10.1097/DAD.0b013e318234cc49.

    Article  PubMed  Google Scholar 

  23. Machler BC, Kirsner RS, Elgart GW. Routine histologic examination for the diagnosis of onychomycosis: an evaluation of sensitivity and specificity. Cutis. 1998;61(4):217–9.

    CAS  PubMed  Google Scholar 

  24. Binstock JM. Molecular biology techniques for identifying dermatophytes and their possible use in diagnosing onychomycosis in human toenail: a review. J Am Podiatr Med Assoc. 2007;97:134–44.

    Article  Google Scholar 

  25. Kanbe T. Molecular approaches in the diagnosis of dermatophytosis. Mycopathologia. 2008;166:307–17.

    Article  Google Scholar 

  26. Shehata AS, Mukherjee PK, Aboulatta HN, et al. Single-step PCR using (GACA)4 primer: utility for rapid identification of dermatophyte species and strains. J Clin Microbiol. 2008;46(8):2641–5.

    Article  CAS  Google Scholar 

  27. Bock M, Maiwald M, Kappe R, et al. Polymerase chain reaction-based detection of dermatophyte DNA with a fungus-specific primer system. Mycoses. 1994;37:79–84.

    Article  CAS  Google Scholar 

  28. Bock M, Nickel P, Maiwald M, et al. Diagnosis of dermatomycoses with polymerase chain reaction. Hautarzt. 1997;48:175–80.

    Article  CAS  Google Scholar 

  29. Baek SC, Chae HJ, Houh D, et al. Detection and differentiation of causative fungi of onychomycosis using PCR amplification and restriction enzyme analysis. Int J Dermatol. 1998;37:682–6.

    Article  CAS  Google Scholar 

  30. Wieser A, Schneider L, Jung J, et al. MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review). Appl Microbiol Biotechnol. 2012;93(3):965–74.

    Article  CAS  Google Scholar 

  31. DeRespinis S, Monnin V, Girard V, et al. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry using the Vitek MS system for rapid and accurate identification of dermatophytes on solid cultures. J Clin Microbiol. 2014;52(12):4286–92.

    Article  Google Scholar 

  32. Karabicak N, Karatuna O, Ilkit M, et al. Evaluation of the Bruker matrix- assisted laser desorption-ionization time-of flight mass spectrometry (MALDI_TOF MS) system for the identification of clinically important dermatophyte species. Mycopathologia. 2015;180(3–4):165–71.

    Article  CAS  Google Scholar 

  33. Mehul B, Gu Z, Jomard A, et al. Sub6(TRI r 2), an onychomycosis marker revealed by proteomics analysis of Trichophyton rubrum secreted proteins in patient nail samples. J Invest Dermatol. 2016;136(1):331–3.

    Article  CAS  Google Scholar 

  34. Niewerth M, Splanemann V, Korting H, et al. Antimicrobial susceptibility testing of dermatophytes – comparison of the agar macrodilution and broth microdilution tests. Chemotherapy. 1998;44:31–5.

    Article  CAS  Google Scholar 

  35. Granade TC, Artis WM. Antimycotic susceptibility testing of dermatophytes in microcultures with a standardized fragmented mycelial inoculum. Antimicrob Agents Chemother. 1980;17:725–9.

    Article  CAS  Google Scholar 

  36. CLSI. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard, CLSI document M38- A2 [ISBN 1-56238-668-9]. 2nd ed. Wayne: CLSI; 2008a.

    Google Scholar 

  37. Ghannoum MA, Chaturvedi V, Espinel-Ingroff A, et al. Intra- and interlaboratory study of a method for testing the antifungal susceptibilities of dermatophytes. J Clin Microbiol. 2004;42(7):2977–9.

    Article  CAS  Google Scholar 

  38. Norris HA, Elewski BE, Ghannoum MA. Optimal growth conditions for the determination of the antifungal susceptibility of three species of dermatophytes with the use of a microdilution method. J Am Acad Dermatol. 1999;40(6):S9–S13.

    Article  CAS  Google Scholar 

  39. Jessup CJ, Warner J, Isham N, et al. Antifungal susceptibility testing of dermatophytes: establishing a medium for inducing conidial growth and evaluation of susceptibility of clinical isolates. J Clin Microbiol. 2000;38:341–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghannoum MA, Arthington-Skaggs B, Chaturvedi V, et al. Interlaboratory study of quality control isolates for a broth microdilution method (modified CLSI M38-A) for testing susceptibilities of dermatophytes to antifungals. J Clin Microbiol. 2006;44:4353–6.

    Article  CAS  Google Scholar 

  41. CLSI. Method for antifungal disk diffusion susceptibility testing of yeasts: approved guideline, CLSI M44-A2 (ISBN 1-56238-532-1). 2nd ed. Wayne: CLSI; 2009.

    Google Scholar 

  42. Alp S, Sancak B, Hascelik G, et al. Influence of different susceptibility testing methods and media on determination of the relevant fluconazole minimum inhibitory concentrations for heavy trailing Candida isolates with low-high phenotype. Mycoses. 2010;53(6):475–80.

    Article  Google Scholar 

  43. Pfaller MA, Messer SA, Mills K, et al. Evaluation of Etest method for determining posaconazole MICs for 314 clinical isolates of Candida species. J Clin Microbiol. 2001;39(11):3952–4.

    Article  CAS  Google Scholar 

  44. CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard, CLSI document M27-A3. 3rd ed. Wayne: Clinical and Laboratory Standards Institute, CLSI; 2008b.

    Google Scholar 

  45. Canton E, Peman J, Iniguez C, et al. Epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole for six Candida species as determined by the colorimetric Sensititre YeastOne method. J Clin Microbiol. 2013;51(8):2691–5.

    Article  CAS  Google Scholar 

  46. Pfaller MA, Chaturvedi V, Diekema DJ, et al. Comparison of the Sensititre YeastOne colorimetric antifungal panel with CLSI microdilution for antifungal susceptibility testing of the echinocandins against Candida spp., using new clinical breakpoints and epidemiological cutoff values. Diagn Microbiol Infect Dis. 2012;73(4):365–8.

    Article  CAS  Google Scholar 

  47. Steifel Laboratories. Addendum to original medical officer’s review of NDA 22-484. Food and Drug Administration, Center for Drug Evaluation and Research; 2010.

    Google Scholar 

  48. Del Rosso JQ. Advances in the treatment of superficial fungal infections: focus on onychomycosis and dry tinea pedis. J Am Osteopath Assoc. 1997;97:339–436.

    Article  Google Scholar 

  49. Orentreich N, Markovsky J, Vogelman JH. The effect of aging on the rate of linear nail growth. J Invest Dermatol. 1979;73:126–30.

    Article  CAS  Google Scholar 

  50. Scher RK, Tavakkol A, Sigurgeirsson B, et al. Onychomycosis: diagnosis and definition of cure. J Am Acad Dermatol. 2007;56(6):939–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Ghannoum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Ghannoum, M., Isham, N. (2018). Onychomycosis: Laboratory Methods. In: Rubin, A.I., Jellinek, N.J., Daniel, C.R., Scher, R.K. (eds) Scher and Daniel’s Nails. Springer, Cham. https://doi.org/10.1007/978-3-319-65649-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65649-6_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65647-2

  • Online ISBN: 978-3-319-65649-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics