Skip to main content

A Study on the Use of Advanced Nondestructive Testing Methods on Histroric Structures

  • Conference paper
  • First Online:
Proceedings of 3rd International Sustainable Buildings Symposium (ISBS 2017) (ISBS 2017)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 7))

Included in the following conference series:

Abstract

Historic structures are social and cultural heritage for the land they are built on. To protect this heritage and to preserve it for the generations to come are among the most important responsibilities of nations. However numerous historical structures are found in Turkey, the awareness around nondestructive maintenance processes which will keep the identity of the structure intact is not developed as required. Historical structures require preservation, and necessary maintenance and reinforcement measures to be taken in order to survive damages arising from several reasons. Such work must be designed by multidisciplinary professionals and must be applied adhering to the original form of the structure. Among the limiting factors involved in an intervention to a structure is the knowledge on the strength and material properties of the structural elements used. Structural elements of a historical building must be subjected to measurements based on a number of assumptions made for parameters such as compressive strength, shear strength and elasticity modules. As a result of practices based on such assumptions, historical structures may face unnecessary repair and reinforcement processes. With the advancement made in technology now it is possible to obtain the necessary data from historical buildings without causing damage or causing minimal damage using nondestructive or semi-destructive test methods. Therefore, it is important and necessary to use and popularize the use of nondestructive testing methods for historical structures. This study investigates the following nondestructive testing methods and reports on the results obtained in a comparative manner: concrete rebound hammer method; flat-jack method; penetration resistance method; ultrasonic method; impact-echo method; and magnetic and electrical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ahunbay Z (1996) Tarihi Çevre Koruma ve Restorasyon. YEM yayınları. İstanbul, pp 23–45 (Turkish)

    Google Scholar 

  2. Akevren S (2010) Non-destructive examination of stone masonry historic structures–quantitative Ir thermography andultrasonic testing. Yüksek Lisans Tezi, Orta Doğu Teknk Üniversitesi Fen Bilimleri Enstitüsü, Ankara, pp 1–148

    Google Scholar 

  3. Aköz F, ve Yüzer N (2001) Tarihi Yapılarda Malzeme Özelliklerinin Belirlenmesinde Uygulanan Yöntemler. Yıldız Teknik Üniversitesi, İstanbul (Turkish)

    Google Scholar 

  4. Assunçao SS, Gracia VP, Caselles O, Clapes J, Salinas V (2014) Assessment of complex masonry structures with GPR compared to other non-destructive testing studies. Remote Sens 2014(6):8220–8237. https://doi.org/10.3390/rs6098220

    Article  Google Scholar 

  5. ASTM C 1196–92 (1997) Standard test method for in situ compressive stress within solid unit masonry estimated using Flatjack measurements

    Google Scholar 

  6. Balaras CA, Argiriou AA (2002) Infrared thermography for building diagnostics. Energy Build 34:171–183

    Article  Google Scholar 

  7. Bıanco A (2012) Endoscopic analysis supporting issues of historic stratigraphic investigations: the case history of Saint Domenico Monastery in Naples-Italy. In: 18th World conference on nondestructive testing Durban South Africa

    Google Scholar 

  8. BS 1881: Part 203 (1986) Recommendations on the non-destructive testing of concrete in the form of plain, reinforced and prestressed test specimens present components and structures by the measurement of ultrasonic pulse velocity

    Google Scholar 

  9. Carino NJ (1991) Nondestructive testing of concrete: history and challenges, concrete technology past, present, and future. In: Proceeding of V. Mohan Malhotra symposium

    Google Scholar 

  10. Çavuş M (2011) Tarihi Yapılarda Üst Örtülerin Çelik Malzeme İle Sağlamlaştırılmasının Sonlu Elemanlar Yöntemiyle Modellenmesi. Doktora Tezi Gazi Üniversitesi-Fen Bilimleri Enstitüsü Ankara (Turkish)

    Google Scholar 

  11. Çiçek P (2009) Thermal performance assessment of historical Turkish Baths. Yüksek Lisans Tezi, Orta Doğu Teknk Üniversitesi Fen Bilimleri Enstitüsü, Ankara, pp 1–160

    Google Scholar 

  12. Erköseoğlu G (2012) Kültürel Mirasın Depremden Korunması Ve Turizme Kazandırılması Amacı İle Uygulanabilecek Güçlendirme Teknikleri. Uzmanlık Tezi, T.C. Kültür ve Turizm Bakanlığı Yatırım ve İşletmeler Genel Müdürlüğü, Ankara (Turkish)

    Google Scholar 

  13. Gioloti A, Proteco S (2001) Experiences on georadar applicability on masonry structures. RILEM TC 177-MDT workshop on on-site control and non-destructive evaluation of masonry structures, Mantova, Italy

    Google Scholar 

  14. Grinzato E, Vavilov V, Kauppinen T (1998) Quantitative infrared thermography in buildings. Energy Build 29:1–9

    Article  Google Scholar 

  15. Grinzato E, Bison PG, Marinetti S (2002) Monitoring of the ancient buildings by the thermal method. J Cult Herit 3:21–29

    Article  Google Scholar 

  16. Kandemir Yucel A, Tavukcuoglu A, Saltik EN (2007) In situ assessment of structural timber elements of a historic building by infrared thermography and ultrasonic velocity. Infrared Phys Technol 49:243–248

    Article  Google Scholar 

  17. Kılıç Demircan R, Kaplan G, Gültekin AB (2016) Analysis of restoration mortars used for strengthening of historical buildings in the context of sustainability criteria. SBE İstanbul

    Google Scholar 

  18. Koçkar R (2012) Tuğla duvarlardaki ısıl özelliklerin ve ısıl sorunların kızılötesi ısıl görüntüleme ve sıcak kutu yöntemleriyle incelenmesi. Yüksek Lisans tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara (Turkish)

    Google Scholar 

  19. Kuran F, Dabanli Ö (2012) Tarihi Yığma Yapıların Mekanik Özelliklerinin Yerinde Yapılan Flat-Jack (Yassı Kriko) Deneyi İle Belirlenmesi. Restorasyon, pp 180–187

    Google Scholar 

  20. Maıerhofer C, Roellıg M (2009) Active thermography for the characterization of surfaces and interfaces of historic masonry structures. In: NDTCE’09, non-destructive testing in civil engineering, Nantes, France

    Google Scholar 

  21. Maldague XPV (2001) Theory and practice of infrared technology for nondestructive testing. Wiley, New York

    Google Scholar 

  22. Noland JL, Atkinson RH, Schuller MP (1990) A review of the flat-jack method for nondestructive evaluation. In: Proceedings of the nondestructive evaluation of civil structures and materials, Boulder, USA

    Google Scholar 

  23. Ocana SM, Canas GI, Requena IG (2004) Thermographic survey of two rural buildings in Spain. Energy Build 36:515–523

    Article  Google Scholar 

  24. Postacıoğlu B (1981) Cisimlerin Yapısı ve Özellikleri-İç Yapı ve Mekanik Özellikler. Cilt 1, İTÜ Matbaası, İstanbul (Turkish)

    Google Scholar 

  25. Qinglin W, Xiuyi W (1988) The evaluation of compressive strength of brick masonry in-situ. In: 8th International brick/block Mas. conference, Dublin, Ireland

    Google Scholar 

  26. Sesigür H, Çelik OC, Çılı F (2007) Tarihi yapılarda taşıyıcı bileşenler, hasar biçimleri, onarım ve güçlendirme. İstanbul Bülten 89:10–21

    Google Scholar 

  27. Simões A, Gago A, Lopes M, Bento R (2012) Characterization of old masonry walls: flat-jack method. In: 15 WCEE Lisboa

    Google Scholar 

  28. Tavukcuoglu A, Cicek P, Grinzato E (2008) Thermal analysis of an historical Turkish bath by quantitaive IR thermography. Quant Infrared Thermogr J 5(2):151–173

    Article  Google Scholar 

  29. Tavukçuoğlu A, Akevren S, Grinzato E (2010) In-situ examination of structural cracks at historic masonry structures by quantitative infrared thermography and ultrasonic testing. J Mod Opt 57(18):1779–1789

    Article  Google Scholar 

  30. Titman DJ (2001) Applications of thermography in non-destructive testing of structures. NDT&E Int 34:149–154

    Article  Google Scholar 

  31. Tuğla R, Tavukçuoğlu A, Arslan M (2013) Examination of thermal properties and failures of brick walls by the use of infrared thermography and hot box method. International conference & exhibition on Application of efficient & renewable energy technologies in low cost buildings and construction, Ankara, Turkey, pp 180–199

    Google Scholar 

  32. Yaman İÖ (2010) Betonda Tahribatlı/Tahribatsız Muayene Metodları. Ders Notu Orta Doğu Teknik Universitesi Ankara (Turkish)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rukiye Tuğla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tuğla, R., Demircan, R.K., Kaplan, G. (2018). A Study on the Use of Advanced Nondestructive Testing Methods on Histroric Structures. In: Fırat, S., Kinuthia, J., Abu-Tair, A. (eds) Proceedings of 3rd International Sustainable Buildings Symposium (ISBS 2017). ISBS 2017. Lecture Notes in Civil Engineering , vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-64349-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64349-6_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64348-9

  • Online ISBN: 978-3-319-64349-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics