Skip to main content

Smartglasses as Assistive Tools for Undergraduate and Introductory STEM Laboratory Courses

  • Chapter
  • First Online:
Perspectives on Wearable Enhanced Learning (WELL)

Abstract

Learning is known to be a highly individual process affected by learners’ individual previous experience and self-directed action. Especially during laboratory courses in university science, technology, engineering and mathematics (STEM) education, all channels of knowledge construction become relevant: students have to match their theoretical background with experimental hands-on experience, leading to an intensive interaction between theory and experiment. Realizing augmented reality scenarios with see-through smartglasses allows to display information directly in the user’s field of view and creates a wearable educational technology, providing learners with active access to various kinds of additional information while keeping their hands free. The framework presented here describes the use of augmented reality learning environments in introductory STEM laboratory courses aiming to provide students additional information and real-time feedback while sustaining their autonomy and the authenticity of their action. Based on principles of the cognitive-affective theory of learning with media (CATLM), we hypothesize that this tool can structure students’ hands-on experiences and guides their attention to cue points of knowledge construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Further information about the theoretical rationale can be found in the original publica tion by Moreno (2006).

References

  • AAPT. (2014). AAPT recommendations for the undergraduate physics laboratory curriculum. Report prepared by a Subcommittee of the AAPT Committee on Laboratories Endorsed by the AAPT Executive Board.

    Google Scholar 

  • Akçayır, M., Akçayır, G., Pektaş, H. M., & Ocak, M. A. (2016). Augmented reality in science laboratories: The effects of augmented reality on university students’ laboratory skills and attitudes toward science laboratories. Computers in Human Behavior, 57, 334–342.

    Article  Google Scholar 

  • Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 6(4), 355–385.

    Article  Google Scholar 

  • Bacca, J., Baldiris, S., Fabregat, R., Graf, S., & Kinshuk. (2014). Augmented reality trends in education: A systematic review of research and applications. Educational Technology & Society, 17, 133–149.

    Google Scholar 

  • Baumeister, J., Ssin, S. Y., ElSayed, N. A. M., Dorrian, J., Webb, D. P., Walsh, J. A., Simon, T. M., Irlitti, A., Smith, R. T., Kohler, M., & Thomas, B. H. (2017). Cognitive cost of using augmented reality displays. IEEE Transactions on Visualization and Computer Graphics, 23(11), 2378–2388.

    Article  Google Scholar 

  • Benford, S., Greenhalgh, C., Reynard, G., Brown, C., & Koleva, B. (1998). Understanding and constructing shared spaces with mixed-reality boundaries. ACM Transactions on Computer-Human Interaction., 5(3), 185–223.

    Article  Google Scholar 

  • Billinghurst, M., & Duenser, A. (2012). Augmented reality in the classroom. Computer, 45(7), 56–63.

    Article  Google Scholar 

  • Bimber, O., & Raskar, R. (2005). Spatial augmented reality: Merging real and virtual worlds. Natick: A.K. Peters.

    Book  Google Scholar 

  • Brown, D. E., & Hammer, D. (2013). Conceptual change in physics. In S. Vosniadou (Ed.), International handbook of research on conceptual change. New York: Routledge.

    Google Scholar 

  • Bujak, K. R., Radu, I., Catrambone, R., MacIntyre, B., Zheng, R., & Golubski, G. (2013). A psychological perspective on augmented reality in the mathematics classroom. Computers & Education, 68, 536–544.

    Article  Google Scholar 

  • Chang, K., Chang, C., Hou, H., Sung, Y., Chao, H., & Lee, C. (2014). Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum. Computers & Education, 71, 185–197.

    Article  Google Scholar 

  • Dede, C. (2009). Immersive interfaces for engagement and learning. Science, 323(5910), 66–69.

    Article  Google Scholar 

  • Di Serio, Á., IbÁñez, M. B., & Kloos, C. D. (2013). Impact of an augmented reality system on students’ motivation for a visual art course. Computers & Education, 68, 586–596.

    Article  Google Scholar 

  • Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S., Reid, S., & LeMaster, R. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical Review Special Topics – Physics Education Research, 1, 010103.

    Article  Google Scholar 

  • Fujimoto, Y., Yamamoto, G., Kato, H., & Miyazaki, J. (2012). Relation between location of information displayed by augmented reality and user’s memorization. In Proceedings of the 3rd Augmented Human International Conference, AH 12, 7:1–7:8, New York, NY, USA.

    Google Scholar 

  • Google LLC. (2018). https://play.google.com/store/apps/details?id=com.google.android.apps.translate. Accessed 27 Apr 2018.

  • Haglund, J., Jeppsson, F., Melander, E., Pendrill, A.-M., Xie, C., & Schönborn, K. J. (2016a). Infrared cameras in science education. Infrared Physics & Technology, 75, 150–152.

    Article  Google Scholar 

  • Haglund, J., Jeppsson, F., & Schönborn, K. J. (2016b). Taking on the heat—A narrative account of how infrared cameras invite instant inquiry. Research in Science Education, 46(5), 685–713.

    Article  Google Scholar 

  • Hanif, M., Sneddon, P. H., Al-Ahmadi, F. M., & Reid, N. (2009). The perceptions, views and opinions of university students about physics learning during undergraduate laboratory work. European Journal of Physics, 30, 85–96.

    Article  Google Scholar 

  • Hochberg, K., Gröber, S., Kuhn, J., & Müller, A. (2014). The spinning disc: Studying radial acceleration and its damping process with smartphones’ acceleration sensor. Physics Education, 49(2), 137–140.

    Article  Google Scholar 

  • Hochberg, K., Kuhn, J., & Müller, A. (2018). Using smartphones as experimental tools – Effects on interest, curiosity and learning in physics education. Journal of Science Education and Technology, 27(5), 385–403.

    Article  Google Scholar 

  • Hockett, P., & Ingleby, T. (2016). Augmented reality with hololens: Experiential architectures embedded in the real world, Authorea. https://doi.org/10.22541/au.148821660.05483993.

  • Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88, 28–54.

    Article  Google Scholar 

  • Holmes, N. G., & Bonn, D. A. (2015). Quantitative comparison to promote inquiry in the introductory physics lab. The Physics Teacher, 53, 352–355.

    Article  Google Scholar 

  • Huk, T., & Ludwigs, S. (2009). Combining cognitive and affective support in order to promote learning. Learning and Instruction, 19(6), 495–505.

    Article  Google Scholar 

  • Inter IKEA Systems B.V. (2018). https://itunes.apple.com/de/app/ikea-place/id1279244498.

  • Jara, C. A., Candelas, F. A., Puente, S. T., & Torres, F. (2011). Hands-on experiences of undergraduate students in automatics and robotics using a virtual and remote laboratory. Computers & Education, 57(4), 2451–2461.

    Article  Google Scholar 

  • Johnson, L., Adams Becker, S., Estrada, V., & Freeman, A. (2014). NMC Horizon Report: 2014 Higher Education Edition. The New Media Consortium, Austin, TX.

    Google Scholar 

  • Karelina, A., & Etkina, E. (2007). Acting like a physicist: Student approach study to experimental design. Physical Review Special Topics – Physics Education Research, 3, 020106.

    Article  Google Scholar 

  • Klein, P., Hirth, M., Gröber, S., Kuhn, J., & Müller, A. (2014). Classical experiments revisited: Smartphone and tablet PC as experimental tools in acoustics and optics. Physics Education, 49, 412–418.

    Article  Google Scholar 

  • Klein, P., Kuhn, J., Müller, A., & Gröber, S. (2015). Video analysis exercises in regular introductory mechanics physics courses: Effects of conventional methods and possibilities of mobile devices. In W. Schnotz, A. H. Kauertz, A. M. Ludwig, & J. Pretsch (Eds.), Multidisciplinary research on teaching and learning (pp. 270–288). London: Palgrave Macmillan.

    Google Scholar 

  • Kontro, I., Heino, O., Hendolin, I., & Galambosi, S. (2018). Modernisation of the intermediate physics laboratory. European Journal of Physics, 39, 025702.

    Article  Google Scholar 

  • Kuhn, J. (2014). Relevant information about using a mobile phone acceleration sensor in physics experiments. American Journal of Physics, 82, 94.

    Article  Google Scholar 

  • Kuhn, J., Lukowicz, P., Hirth, M., Poxrucker, A., Weppner, J., & Younas, J. (2016). gPhysics – Using smart glasses for head-centered, context-aware learning in physics experiments. IEEE Transactions on Learning Technologies, 9(4), 304–317.

    Article  Google Scholar 

  • Kuhn, J., Molz, A., Gröber, S., & Frübis, J. (2014). iRadioactivity – possibilities and limitations for using smartphones and tablet PCs as radioactive counters. Physics Teacher, 52, 351–356.

    Article  Google Scholar 

  • Lin, H.-C. K., Hsieh, M.-C., Wang, C.-H., Sie, Z.-Y., & Chang, S.-H. (2011). Establishment and usability evaluation of an interactive ar learning system on conservation of fish. The Turkish Online Journal of Educational Technology, 10(4), 181–187.

    Google Scholar 

  • Lunetta, V. N., Hofstein, A., & Clough, M. P. (2005). Learning and teaching in the school science laboratory: An analysis of research, theory, and practice. In S. K. Abell, N. G. Lederman (Eds.) Handbook of research on science education. Taylor & Francis, Mahwah, NJ.

    Google Scholar 

  • Mayer, R. E. (Ed.). (2014a). The Cambridge handbook of multimedia learning. New York: Cambridge University Press.

    Google Scholar 

  • Mayer, R. E. (2014b). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning. New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Mayer, R. E., & Fiorella, L. (2014). Principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity and temporal contiguity principles. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning. New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, 77(12), 1321–1329.

    Google Scholar 

  • Moreno, R. (2005). Instructional technology: Promise and pitfalls. In Technology-based education: Bringing researchers and practitioners together. Greenwich: Information Age Publishing.

    Google Scholar 

  • Moreno, R. (2006). Learning in high-tech and multimedia environments. Current Directions in Psychological Science, 15(2), 63–67.

    Article  Google Scholar 

  • Moreno, R., & Mayer, R. (2007). Interactive multimodal learning environments. Educational Psychology Review, 19, 309–326.

    Article  Google Scholar 

  • Munnerley, D., Bacon, M., Wilson, A., Steele, J., Hedberg, J., & Fitzgerald, R. (2012). Confronting an augmented reality. Research in learning technology, ALT-C 2012 Conference Proceedings, 0154.

    Google Scholar 

  • Muñoz-Cristóbal, J. A., Jorrín-AbellÁn, I. M., Asensio-Pérez, J. I., Martínez-Monés, A., Prieto, L. P., & Dimitriadis, Y. (2015). Supporting teacher orchestration in ubiquitous learning environments: A study in primary education. IEEE Transactions on Learning Technologies, 8(1), 83–97.

    Article  Google Scholar 

  • Möllmann, K.-P., & Vollmer, M. (2007). Infrared thermal imaging as a tool in university physics education. European Journal of Physics, 28(3), S37–S50.

    Article  Google Scholar 

  • Nordine, J., & Weßnigk, S. (2016). Exposing hidden energy transfers with inexpensive thermal imaging cameras. Science Scope, 39(7), 25–31.

    Article  Google Scholar 

  • Paas, F., & Sweller, J. (2014). Implications of cognitive load theory for multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning. New York: Cambridge University Press.

    Google Scholar 

  • Palmerius, K. L., & Schönborn, K. (2016). Visualization of heat transfer using projector-based spatial augmented reality (pp. 407–417). Cham: Springer International Publishing.

    Google Scholar 

  • Sandor, C., Fuchs, M., Cassinelli, Á., Li, H., Newcombe, R. A., Yamamoto, G., & Feiner, S. K. (2015). Breaking the barriers to true augmented reality. CoRR, abs/1512.05471. arXiv:1512.05471

    Google Scholar 

  • Santos, M. E. C., Chen, A., Taketomi, T., Yamamoto, G., Miyazaki, J., & Kato, H. (2014). Augmented reality learning experiences: Survey of prototype design and evaluation. IEEE Transactions on Learning Technologies, 7(1), 38–56.

    Article  Google Scholar 

  • Schmalstieg, D., & Höllerer, T. (2016). Augmented reality: Principles and practice. Boston: Addison-Wesley Professional.

    Google Scholar 

  • Schreiber, N., Theyßen, H., & Schecker, H. (2012). Experimental competencies in science: A comparison of assessment tools. In C. Brugière, A. Tiberghien, & P. Clément (Eds.), Proceedings of the ESERA 2011 Conference, Lyon.

    Google Scholar 

  • Schwarz, O., Vogt, P., & Kuhn, J. (2013). Acoustic measurements of bouncing balls and the determination of gravitational acceleration. Physics Teacher, 51, 312–313.

    Article  Google Scholar 

  • Sotiriou, S., & Bogner, F. X. (2008). Visualizing the invisible: Augmented reality as an innovative science education scheme. Advanced Science Letters, 1(1), 114–122.

    Article  Google Scholar 

  • Squire, K. D., & Jan, M. (2007). Mad city mystery: Developing scientific argumentation skills with a place-based augmented reality game on handheld computers. Journal of Science Education and Technology, 16(1), 5–29.

    Article  Google Scholar 

  • Strzys, M. P., Kapp, S., Thees, M., Klein, P., Lukowicz, P., Knierim, P., Schmidt, A., & Kuhn, J. (2018). Physics holo.lab learning experience: Using smartglasses for augmented reality labwork to foster the concepts of heat conduction. European Journal of Physics, 39, 035703.

    Article  Google Scholar 

  • Strzys, M. P., Kapp, S., Thees, M., Kuhn, J., Lukowicz, P., Knierim, P., & Schmidt, A. (2017). Augmenting the thermal flux experiment: A mixed reality approach with the hololens. The Physics Teacher, 55(6), 376.

    Article  Google Scholar 

  • Sweller, J. (1999). Instructional design in technical areas. Camberwell: ACER Press.

    Google Scholar 

  • Theyßen, H., Schecker, H., Gut, C., Hopf, M., Kuhn, J., Labudde, P., Müller, A., Schreiber, N., & Vogt, P. (2014). Modeling and assessing experimental competencies in physics. In C. Bruguière, A. Tiberghien, & P. Clément (Eds.), Topics and trends in current science education: 9th ESERA Conference Selected Contributions, Contributions from Science Education. Dordrecht: Springer.

    Google Scholar 

  • Vogt, P., Kuhn, J., & Müller, S. (2011). Experiments using cell phones in physics classroom education: The computer aided g-determination. Physics Teacher, 49, 383–384.

    Article  Google Scholar 

  • Volkwyn, T. S., Allie, S., Buffler, A., & Lubben, F. (2008). Impact of a conventional introductory laboratory course on the understanding of measurement. Physical Review Special Topics – Physics Education Research, 4, 010108.

    Article  Google Scholar 

  • Vollmer, M., & Möllmann, K.-P. (2013). Infrared thermal imaging. Weinheim: Wiley.

    Google Scholar 

  • Vollmer, M., Möllmann, K.-P., Pinno, F., & Karstädt, D. (2001). There is more to see than eyes can detect. The Physics Teacher, 39(6), 371–376.

    Article  Google Scholar 

  • Wieman, C., & Holmes, N. G. (2015). Measuring the impact of an instructional laboratory on the learning of introductory physics. American Journal of Physics, 83, 972–978.

    Article  Google Scholar 

  • Wu, H.-K., Lee, S. W.-Y., Chang, H.-Y., & Liang, J.-C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62, 41–49.

    Article  Google Scholar 

  • Zwickl, B. M., Finkelstein, N., & Lewandowski, H. J. (2013). The process of transforming an advanced lab course: Goals, curriculum, and assessments. American Journal of Physics, 81, 63.

    Article  Google Scholar 

Download references

Acknowledgment

Support from the German Federal Ministry of Education and Research (BMBF) via the projects Be-greifen and gLabAssist is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin P. Strzys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strzys, M.P. et al. (2019). Smartglasses as Assistive Tools for Undergraduate and Introductory STEM Laboratory Courses. In: Buchem, I., Klamma, R., Wild, F. (eds) Perspectives on Wearable Enhanced Learning (WELL). Springer, Cham. https://doi.org/10.1007/978-3-319-64301-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64301-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64300-7

  • Online ISBN: 978-3-319-64301-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics