Skip to main content

3.2 Human Factors Engineering

  • Chapter
  • First Online:
Book cover Clinical Informatics Board Review and Self Assessment
  • 962 Accesses

Abstract

Human factors engineering (HFE) and human computer interaction (HCI) are multidisciplinary sciences that seek to optimize the interactions between humans and a given system (Holden et al. 2016). HCI began in the early 1980s as a blend of HFE with software engineering, with the intent of applying scientific principles to address real problems in the software development space (Carroll 2003). HCI assimilates cognitive, social, and behavioral sciences into its frameworks, and members of the HCI community reach far into a myriad of domains including computer science, cognitive psychology, anthropology, mathematics, and communication studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    See https://www.surveymonkey.com/mp/software-evaluation-survey-template/ for an example.

  2. 2.

    In one extreme case, a removing a single button was credited with an enormous increase in sales. See Spool JM. The $300 Million Button 2017. https://articles.uie.com/three_hund_million_button/ (accessed March 16, 2017).

References

  • Annett J (2003) Hierarchical task analysis. In: Handbook of cognitive task design, vol 2. pp 17–35

    Google Scholar 

  • Bederson B, Shneiderman B (2003) Theories for understanding information visualization. In: Bederson B, Shneiderman B (eds) The craft of information visualization. Morgan Kaufmann, Boston, pp 349–351

    Google Scholar 

  • Bevan N, Carter J, Harker S (2015) ISO 9241-11 revised: what have we learnt about usability since 1998? Human-computer interaction: design and evaluation. Springer, Cham

    Google Scholar 

  • Card S, Moran T, Newell A (1980) The keystroke-level model for user performance time with interactive systems. Commun ACM 23(7):396–410

    Article  Google Scholar 

  • Carol SK, Card SK, English WK, English WK, Burr BYJ, Burr BJ (1978) Evaluation of mouse, rate-controlled isometric joystick, step keys, text keys for text selection on a CRT. Ergonomics 21(8):601–613

    Article  Google Scholar 

  • Carroll JM (2003) Introduction: toward a multidisciplinary science of human-computer interaction. In: HCI models, theories, and frameworks: toward a multidisciplinary science. Morgan Kaufmann, Boston

    Google Scholar 

  • Chung PH, Zhang J, Johnson TR, Patel VL (2003) An extended hierarchical task analysis for error prediction in medical devices. AMIA ... annual symposium proceedings/AMIA symposium. AMIA Symposium. p 165

    Google Scholar 

  • Cooke NJ (1994) Varieties of knowledge elicitation techniques. Int J Hum Comput Stud 41(6):801–849

    Article  Google Scholar 

  • Del Beccaro MA, Jeffries HE, Eisenberg MA, Harry ED (2006) Computerized provider order entry implementation: no association with increased mortality rates in an intensive care unit. Pediatrics 118(1):290–295. https://doi.org/10.1542/peds.2006-0367. PubMed PMID: 16818577

    Article  PubMed  Google Scholar 

  • Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47(6):381–391

    Article  CAS  Google Scholar 

  • Furniss D, Masci P, Curzon P, Mayer A, Blandford A (2015) Exploring medical device design and use through layers of distributed cognition: how a glucometer is coupled with its context. J Biomed Inform 53:330–341

    Article  Google Scholar 

  • Gibbons MC, Lowry SZ, Quinn MT (2011) NISTIR 7769. Human factors guidance to prevent healthcare disparities with the adoption of EHRs. National Institute of Standards and Technology Interagency/Internal Report (NISTIR), Gaithersburg, MD

    Google Scholar 

  • Han YY, Carcillo JA, Venkataraman ST, Clark RS, Watson RS, Nguyen TC et al (2005) Unexpected increased mortality after implementation of a commercially sold computerized physician order entry system. Pediatrics 116(6):1506–1512. https://doi.org/10.1542/peds.2005-1287. PubMed PMID: 16322178

    Article  PubMed  Google Scholar 

  • Hick WE (1951) A simple stimulus generator. Q J Exp Psychol 3(2):94–95

    Article  Google Scholar 

  • Holden RJ, Karsh BT (2010) The technology acceptance model: its past and its future in health care. J Biomed Inform 43(1):159–172. https://doi.org/10.1016/j.jbi.2009.07.002. PubMed PMID: 19615467

    Article  PubMed  Google Scholar 

  • Holden RJ, Voida S, Savoy A, Jones JF, Kulanthaivel A (2016) Human factors engineering and human–computer interaction: supporting user performance and experience. In: Dixon BE, Finnell JT (eds) Clinical informatics study guide. Springer, Zurich, pp 287–307

    Chapter  Google Scholar 

  • Hutchins E (1995) Cognition in the wild. MIT Press, Cambridge

    Google Scholar 

  • Hyman R (1953) Stimulus information as a determinant of reaction time. J Exp Psychol 45(3):188–196

    Article  CAS  Google Scholar 

  • Hysong SJ, Sawhney MK, Wilson L, Sittig DF, Espadas D, Davis T et al (2010) Provider management strategies of abnormal test result alerts: a cognitive task analysis. J Am Med Inform Assoc 17(1):71–77

    Article  Google Scholar 

  • International Organization for Standardization (1998) ISO 9241-11:1998. Ergonomic requirements for office work with visual display terminals (VDTs)—Part 11: Guidance on usability. International Organization for Standardization, Geneva

    Google Scholar 

  • International Organization for Standardization (1999) ISO 13407:1999. Human-centred design processes for interactive systems

    Google Scholar 

  • International Organization for Standardization (2010) ISO 9241-210:210. Ergonomics of human-system interaction Part 210: human-centred design for interactive systems. International Organization for Standardization, Geneva

    Google Scholar 

  • Jokela T, Iivari N, Matero J, Karukka M (2003) The standard of user-centered design and the standard definition of usability. ACM, New York

    Book  Google Scholar 

  • Kannampallil TG, Abraham J (2015) Evaluation of health information technology: methods, frameworks and challenges. In: Patel VL, Kannampallil TG, Kaufman DR (eds) Cognitive informatics for biomedicine. Springer, Cham, pp 81–109

    Chapter  Google Scholar 

  • Kaufman DR, Kannampallil TG, Patel VL (2015) Cognition and human computer interaction in health and biomedicine. In: Patel VL, Kannampallil TG, Kaufman DR (eds) Cognitive informatics for biomedicine. Springer, Cham, pp 9–34

    Chapter  Google Scholar 

  • Lane R, Stanton NA, Harrison D (2006) Applying hierarchical task analysis to medication administration errors. Appl Ergon 37(5):669–679

    Article  Google Scholar 

  • Martin B, Hanington B (2012) Universal methods of design. Rockport Publishers, Beverly, MA, 207 p

    Google Scholar 

  • Middleton B, Bloomrosen M, Dente MA, Hashmat B, Koppel R, Overhage JM et al (2013) Enhancing patient safety and quality of care by improving the usability of electronic health record systems: recommendations from AMIA. J Am Med Inform Assoc 20(e1):e2–e8. https://doi.org/10.1136/amiajnl-2012-001458. PubMed PMID: 23355463

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen J (1993) Usability engineering. Academic Press, Boston

    Book  Google Scholar 

  • Nielsen J (1994) Enhancing the explanatory power of usability heuristics. In: Proceedings of the SIGCHI conference on human factors in computing systems, ACM, Boston, MA. pp 152–158

    Google Scholar 

  • Norman DA (1986) Cognitive engineering. In: Norman DA (ed) User centered system design. Erlbaum, Hillsdale, NJ

    Chapter  Google Scholar 

  • Schraagen JM, Chipman SF, Shalin VL, eBooks Corporation (2000) Cognitive task analysis. Annotated edition ed. CRC Press Inc, Boca Raton, FL

    Google Scholar 

  • Stanton NA (2006) Hierarchical task analysis: developments, applications, and extensions. Appl Ergon 37(1):55–79

    Article  Google Scholar 

  • Unertl KM, Weinger MB, Johnson KB, Lorenzi NM (2009) Describing and modeling workflow and information flow in chronic disease care. J Am Med Inform Assoc 16(6):826–836

    Article  Google Scholar 

  • United States Department of Health and Human Services (2017) Usability.Gov [Internet]. Washington, DC. [cited 11 April 2017]. https://www.usability.gov/

  • Usability Professionals Association (2010) The usability body of knowledge [Internet]. [cited 11 April 2017]. http://www.usabilitybok.org/

  • Visser W (2006) Designing as construction of representations: a dynamic viewpoint in cognitive design research. Hum Comput Interact 21(1):103–152

    Article  Google Scholar 

  • Zhang J (1997) The nature of external representations in problem solving. Cogn Sci 21(2):179–217

    Article  Google Scholar 

  • Zhang J, Walji MF (2011) TURF: toward a unified framework of EHR usability. J Biomed Inform 44(6):1056–1067

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Mankowitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mankowitz, S. (2018). 3.2 Human Factors Engineering. In: Mankowitz, S. (eds) Clinical Informatics Board Review and Self Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-63766-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63766-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63765-5

  • Online ISBN: 978-3-319-63766-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics