Skip to main content

Mathematical Modelling as a Professional Activity: Lessons for the Classroom

  • Chapter
  • First Online:
Book cover Mathematical Modelling and Applications

Abstract

This chapter presents a discussion about similarities and differences between working with mathematical modelling in ‘school’ and mathematical modelling as a ‘professional task’ in the workplace based on empirical and theoretical research studies. Issues discussed concern goals; technology; division of labour, communication and collaboration; model construction, including the application and adaption of predefined models; projects; and risks involved in using the models. Based on this discussion and examples from innovative teaching practices, approaches to simulate modelling as a ‘professional activity’ in educational settings are explored and exemplified with a role-play activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Armstrong, K. (2003). Applications of role-playing in tourism management teaching: An evaluation of a learning method. Journal of Hospitality, Leisure, Sport and Tourism Education, 2(1), 5–16.

    Article  Google Scholar 

  • Barbosa, J. C. (2006). Mathematical modelling in classroom: A socio-critical and discursive perspective. ZDM Mathematics Education, 38(3), 293–301.

    Article  Google Scholar 

  • Barbosa, J. C. (2009). Mathematical modelling, socio-critical perspective and the reflexive discussions. In M. Blomhøj & S. Carreira (Eds.), Mathematical applications and modelling in the teaching and learning of mathematics. Proceedings from topic study group 21 at ICME11 (IMFUFA tekst nr. 461–2009) (pp. 117–143). Denmark: Roskilde University.

    Google Scholar 

  • Belova, N., Eliks, I., & Feierabend, T. (2013). The evaluation of role-playing in the context of teaching climate change. International Journal of Science and Mathematics Education, 13(1), 165–190.

    Google Scholar 

  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects: State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37–68.

    Article  Google Scholar 

  • Blum, W., Galbraith, P. L., Henn, H., & Niss, M. (Eds.). (2007). Modelling and applications in mathematics education. The 14th ICMI study. New York: Springer.

    Google Scholar 

  • Brasil. (1997). Parâmetros curriculares nacionais (PCNs): matemática [National curricular parameters: Mathematics]. Brasília: MECSEF.

    Google Scholar 

  • Burghes, D. N. (1984). Prologue. In J. S. Berry, D. N. Burghes, I. D. Huntley, D. J. G. James, & A. O. Moscardini (Eds.), Teaching and applying mathematical modelling (pp. xi–xvi). Chichester: Ellis Horwood.

    Google Scholar 

  • Chevallard, Y. (1991). La transposition didactique – Du savoir savant au savoir enseigné. Grenoble: La Pensée sauvage.

    Google Scholar 

  • Damlamian, A., Rodrigues, J. F., & Sträßer, R. (2013). Conclusion on educational interfaces between mathematics and industry. In A. Damlamian, J. F. Rodrigues, & R. Strässer (Eds.), Educational interfaces between mathematics and industry (pp. 447–452). Cham: Springer.

    Chapter  Google Scholar 

  • Department for Education. (2013). The national curriculum in England: Key stages 3 and 4 framework document. Retrieved from: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/381754/SECONDARY_national_curriculum.pdf

  • Department of Basic Education. (2004). National curriculum statement (NCS): Curriculum and assessment policy statement. Retrieved from: http://www.education.gov.za/Curriculum/NCSGradesR12/CAPS/tabid/420/Default.aspx

  • Doerr, H., & Pratt, D. (2008). The learning of mathematics and mathematical modelling. In M. K. Heid & G. W. Blume (Eds.), Research synthesis. Research on technology and the teaching and learning of mathematics (Vol. 1, pp. 259–285). Charlotte: Information Age Publishing.

    Google Scholar 

  • Drakes, C. I. (2012). Mathematical modelling: From novice to expert. Doctoral dissertation, Simon Fraser University.

    Google Scholar 

  • Edwards, D., & Morton, P. C. M. (1987). Formal verbal presentation in project-based mathematical modelling. In J. S. Berry, D. N. Burghes, I. D. Huntley, D. J. G. James, & A. O. Moscardini (Eds.), Mathematical modelling courses (pp. 51–57). Chichester: Ellis Horwood.

    Google Scholar 

  • Frejd, P. (2013a). An analysis of mathematical modelling in Swedish textbooks in upper secondary school. Nordic Studies in Mathematics Education, 18(3), 59–95.

    Google Scholar 

  • Frejd, P. (2013b). Modes of modelling assessment – A literature review. Educational Studies in Mathematics, 84(3), 413–438.

    Article  Google Scholar 

  • Frejd, P. (2015). Mathematical modellers’ opinions on mathematical modelling in upper secondary education. In G. A. Stillman, W. Blum, & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice: Cultural, social and cognitive influences (pp. 327–337). Cham: Springer.

    Chapter  Google Scholar 

  • Frejd, P., & Bergsten, C. (2016). Mathematical modelling as a professional task. Educational Studies in Mathematics, 91(1), 11–35. A doi: https://doi.org/10.1007/s10649-015-9654-7.

  • Gainsburg, J. (2003). The mathematical behavior of structural engineers. Doctoral dissertation, Stanford University.

    Google Scholar 

  • Gainsburg, J. (2007a). The mathematical disposition of structural engineers. Journal for Research in Mathematics Education, 38(5), 477–506.

    Google Scholar 

  • Gainsburg, J. (2007b). Problem solving and learning in everyday structural engineering work. In R. A. Lesh, E. Hamilton, & J. Kaput (Eds.), Foundations for the future in mathematics education (pp. 37–56). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Galbraith, P. (2013). From conference to community: An ICTMA journey – The Ken Houston inaugural lecture. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 27–45). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Garcia, F., Gascón, J., Higueras, L., & Bosch, M. (2006). Mathematical modelling as a tool for the connection of school mathematics. ZDM Mathematics Education, 38(3), 226–246.

    Article  Google Scholar 

  • Geiger, V. (2013). Strässer’s didactic tetrahedron as a basis for theorising mathematical modelling activity within social contexts. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 107–116). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Geiger, V., & Frejd, P. (2015). A reflection on mathematical modelling and applications as a field of research: Theoretical orientation and diversity. In G. A. Stillman, W. Blum, & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice: Cultural, social and cognitive influences (pp. 161–171). Cham: Springer.

    Chapter  Google Scholar 

  • Ginsburg, H. (2009). Mathematical play and playful mathematics: A guide for early education. In D. Singer, R. Golinkoff, & K. Hirsh-Pasek (Eds.), Play = learning: How play motivates and enhances children’s cognitive and social- emotional growth. New York: Oxford University Press. Retrieved from: http://udel.edu/~roberta/play/Ginsburg.pdf

  • Griffiths, R. (2010). Mathematics and play. In J. Moyle (Ed.), The excellence of play (3rd ed., pp. 169–185). Maidenhead: Open University Press.

    Google Scholar 

  • Heilio, M. (2013). Mathematics in industry and teacher training. In A. Damlamian, J. F. Rodrigues, & R. Strässer (Eds.), Educational interfaces between mathematics and industry (pp. 223–228). Cham: Springer.

    Chapter  Google Scholar 

  • Jablonka, E. (1996). Meta-Analyse von Zugängen zur mathematischen Modellbildung und Konsequenzen für den Unterricht [Analyses of approaches to mathematical modelling and educational consequences]. Dissertation, Transparent-Verlag, Berlin.

    Google Scholar 

  • Jablonka, E. (1997). What makes a model effective and useful (or not)? In S. K. Houston, W. Blum, I. D. Huntley, & N. T. Neill (Eds.), Teaching and learning mathematical modelling (pp. 39–50). Chichester: Albion.

    Google Scholar 

  • Jablonka, E., & Gellert, U. (2007). Mathematisation – demathematisation. In U. Gellert & E. Jablonka (Eds.), Mathematisation and demathematisation: Social, philosophical and educational ramifications (pp. 1–18). Rotterdam: Sense.

    Google Scholar 

  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM Mathematics Education, 38(3), 302–310.

    Article  Google Scholar 

  • Kaiser, G., Bracke, M., Göttlich, S., & Kaland, C. (2013a). Authentic complex modelling problems in mathematics education. In A. Damlamian, J. F. Rodrigues, & R. Strässer (Eds.), Educational interfaces between mathematics and industry (pp. 287–297). Cham: Springer.

    Chapter  Google Scholar 

  • Kaiser, G., van der Kooij, H., & Wake, G. (2013b). Educational interfaces between mathematics and industry at school level. In A. Damlamian, J. F. Rodrigues, & R. Strässer (Eds.), Educational interfaces between mathematics and industry (pp. 263–270). Cham: Springer.

    Chapter  Google Scholar 

  • Li, T. (2013). Mathematical modelling in education is the most important educational interface between mathematics and industry. In A. Damlamian, J. F. Rodrigues, & R. Strässer (Eds.), Educational interfaces between mathematics and industry (pp. 51–58). Cham: Springer.

    Chapter  Google Scholar 

  • McGuire, J., & Priestley, P. (1981). Life after school: A social skills curriculum. Oxford: Pergamon.

    Google Scholar 

  • Ministry of Education. (2013). Mathematics syllabus secondary 1 to 4 N(T) course. Retrieved from: http://www.moe.gov.sg/education/syllabuses/sciences/

  • National Governors Association Center for Best Practices and Council of Chief State School Officers [NGACBP&CCSSO]. (2010). Common core state standards for mathematics. Washington, DC: National Governors Association Center for Best Practices and Council of Chief State School Officers.

    Google Scholar 

  • Nestel, D., & Tierney, T. (2007). Role-play for medical students learning about communication: Guidelines for maximising benefits. BMC Medical Education, 7, 3. Retrieved from: http://www.biomedcentral.com/1472-6920/7/3.

    Article  Google Scholar 

  • Niss, M. A. (2015). Prescriptive modelling – challenges and opportunities. In G. A. Stillman, W. Blum, & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice: Cultural, social and cognitive influences (pp. 67–79). Cham: Springer.

    Chapter  Google Scholar 

  • Noss, R., & Hoyles, C. (1996). The visibility of meanings: Modelling the mathematics of banking. International Journal of Computers for Mathematical Learning, 1(17), 3–31.

    Google Scholar 

  • Skolverket. (2012). Upper secondary school 2011. Retrieved from: http://www.skolverket.se/publikationer?id=2801

  • Spandaw, J. (2011). Practical knowledge of research mathematicians, scientists, and engineers about the teaching of modelling. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 679–688). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Speiser, B., & Walter, C. (2010). Models as tools, especially for making sense of problems. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies (pp. 167–172). New York: Springer.

    Chapter  Google Scholar 

  • Stillman, G., Blum, W., & Biembengut, M. S. (2015). Mathematical modelling in education research and practice: Cultural, social and cognitive influences. Cham: Springer.

    Book  Google Scholar 

  • Swedish Ministry of the Environment. (2012/2013). En hållbar rovdjurspolitik [Sustainable predator policy]. (SOU [Swedish Government Official Reports] 2012/2013:191). Retrieved from: http://www.regeringen.se/sb/d/16553/a/223451

  • van Ments, M. (1999). The effective use of role-play. London: Kogan Page.

    Google Scholar 

  • Vos, P. (2011). What is ‘authentic’ in the teaching and learning of mathematical modelling? In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 713–722). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Vos, P. (2015). Authenticity in extra-curricular mathematics activities: Researching authenticity as a social construct. In G. A. Stillman, W. Blum, & M. S. Biembengut (Eds.), Mathematical modelling in education, research and practice: Cultural, social and cognitive influences (pp. 105–113). Cham: Springer.

    Chapter  Google Scholar 

  • Wake, G. (2014). Making sense of and with mathematics: The interface between academic mathematics and mathematics in practice. Educational Studies in Mathematics, 2(86), 271–290.

    Article  Google Scholar 

  • Wedege, T. (2010). Researching workers’ mathematics at work. In A. Araújo, A. Fernandes, A. Azevedo, & J. F. Rodrigues (Eds.), Proceedings of EIMI 2010 conference: Educational interfaces between mathematics and industry (pp. 565–574). Lisbon: Centro International de Matemática & Bedford, USA: COMAP.

    Google Scholar 

  • Willemain, T. R. (1995). Model formulation: What experts think about and when. Operations Research, 43(6), 916–932.

    Article  Google Scholar 

  • Williams, H. (2014). The relevance of role play to the learning of mathematics in primary classroom. Doctoral dissertation, University of Roehampton.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frejd, P. (2017). Mathematical Modelling as a Professional Activity: Lessons for the Classroom. In: Stillman, G., Blum, W., Kaiser, G. (eds) Mathematical Modelling and Applications. International Perspectives on the Teaching and Learning of Mathematical Modelling. Springer, Cham. https://doi.org/10.1007/978-3-319-62968-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62968-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62967-4

  • Online ISBN: 978-3-319-62968-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics