Skip to main content

Multi-objective Optimization of Cogeneration of Power and Heat in a Combined Gas Turbine and Organic Rankine Cycle

  • Chapter
  • First Online:
Exergy for A Better Environment and Improved Sustainability 1

Part of the book series: Green Energy and Technology ((GREEN))

  • 1852 Accesses

Abstract

A multi-objective optimization method of cogeneration of power and heat in a combined gas turbine and organic Rankine cycle (ORC) is conducted to achieve the best system design parameters from both thermodynamic and economic aspects by utilizing nondominated sorting genetic algorithm-II (NSGA-II). Exergy efficiency and total cost rate of the system have been considered as objective functions. The cogeneration system consists of a gas turbine (GT) and an organic Rankine cycle (ORC) in which the two cycles are connected through a single-pressure heat recovery steam generator (HRSG). In order to optimize the system, air compressor pressure ratio, air compressor isentropic efficiency, air preheater outlet temperature, turbine inlet temperature, isentropic efficiency of the gas turbine, pinch point temperature of HRSG, pinch point temperature of evaporator, evaporator temperature, and condenser temperature have been selected as decision variables. Optimization results indicate that exergy efficiency of the cycle increases from 51.41% at base case to 55.6% while more than 9.15% reduction is achieved in the total cost rate of the cycle. Also by applying multi-objective optimization, the exergo-economic factor has reached from 10.68 to 27.40.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadi, P., Dincer, I.: Thermodynamic and exergoenvironmental analyses, and multi-objective optimization of a gas turbine power plant. Appl. Therm. Eng. 31(14), 2529–2540 (2011)

    Article  Google Scholar 

  • Ahmadi, P., Rosen, M.A., Dincer, I.: Greenhouse gas emission and exergo-environmental analyses of a trigeneration energy system. Int. J. Greenhouse Gas Control. 5(6), 1540–1549 (2011)

    Article  Google Scholar 

  • Ahmadi, P., Dincer, I., Rosen, M.A.: Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration. Energy Convers. Manag. 64, 447–453 (2012)

    Article  Google Scholar 

  • Al-Sulaiman, F.: Thermodynamic Modeling and Thermoeconomic Optimization of Integrated Trigeneration Plants Using Organic Rankine Cycles, Ph.D Thesis, University of Waterloo, Waterloo, Ontario, Canada (2010)

    Google Scholar 

  • Baghernejad, A., Yaghoubi, M.: Exergoeconomic analysis and optimization of an integrated solar combined cycle system (ISCCS) using genetic algorithm. Energy Convers. Manag. 52(5), 2193–2203 (2011)

    Article  Google Scholar 

  • Bamgbopa, M.O.: Modeling and performance evaluation of an organic Rankine cycle (ORC) with R245fa as working fluid. Middle East Technical University. (2012)

    Google Scholar 

  • Bejan, A., Moran, M.J.: Thermal Design and Optimization. Wiley, New York (1996)

    MATH  Google Scholar 

  • Chacartegui, R., Sánchez, D., Muñoz, J., Sánchez, T.: Alternative ORC bottoming cycles for combined cycle power plants. Appl. Energy. 86(10), 2162–2170 (2009)

    Article  Google Scholar 

  • Ghaebi, H., Amidpour, M., Karimkashi, S., Rezayan, O.: Energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system with gas turbine prime mover. Int. J. Energy Res. 35(8), 697–709 (2011)

    Article  Google Scholar 

  • Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. Wiley, New York (2004)

    MATH  Google Scholar 

  • Kwon, Y.-H., Kwak, H.-Y., Oh, S.-D.: Exergoeconomic analysis of gas turbine cogeneration systems. Exergy Int. J. 1(1), 31–40 (2001)

    Article  Google Scholar 

  • Lazzaretto, A., Tsatsaronis, G.: A general process-based methodology for exergy costing. Proc. ASME advanced energy sys. Div. AES. 36, 413–428 (1996)

    Google Scholar 

  • Lazzaretto, A., Tsatsaronis, G.: SPECO: a systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy. 31(8), 1257–1289 (2006)

    Article  Google Scholar 

  • Lozano, M., Valero, A.: Theory of the exergetic cost. Energy. 18(9), 939–960 (1993)

    Article  Google Scholar 

  • Mago, P.J., Luck, R.: Energetic and exergetic analysis of waste heat recovery from a microturbine using organic Rankine cycles. Int. J. Energy Res. 37(8), 888–898 (2013)

    Article  Google Scholar 

  • Mago, P.J., Chamra, L.M., Srinivasan, K., Somayaji, C.: An examination of regenerative organic Rankine cycles using dry fluids. Appl. Therm. Eng. 28(8), 998–1007 (2008)

    Article  Google Scholar 

  • Nafey, A., Sharaf, M.: Combined solar organic Rankine cycle with reverse osmosis desalination process: energy, exergy, and cost evaluations. Renew. Energy. 35(11), 2571–2580 (2010)

    Article  Google Scholar 

  • Petrakopoulou, F., Boyano, A., Cabrera, M., Tsatsaronis, G.: Exergoeconomic and exergoenvironmental analyses of a combined cycle power plant with chemical looping technology. Int. J. Greenhouse Gas Control. 5(3), 475–482 (2011)

    Article  Google Scholar 

  • Pierobon, L., Nguyen, T.-V., Larsen, U., Haglind, F., Elmegaard, B.: Multi-objective optimization of organic Rankine cycles for waste heat recovery: application in an offshore platform. Energy. 58, 538–549 (2013)

    Article  Google Scholar 

  • Quoilin, S., Declaye, S., Tchanche, B.F., Lemort, V.: Thermo-economic optimization of waste heat recovery organic Rankine cycles. Appl. Therm. Eng. 31(14), 2885–2893 (2011)

    Article  Google Scholar 

  • Sayyaadi, H.: Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system. Appl. Energy. 86(6), 867–879 (2009)

    Article  Google Scholar 

  • Sayyaadi, H., Nejatolahi, M.: Multi-objective optimization of a cooling tower assisted vapor compression refrigeration system. Int. J. Refrig. 34(1), 243–256 (2011)

    Article  Google Scholar 

  • Shokati, N., Mohammadkhani, F., Yari, M., Mahmoudi, S., Rosen, M.A.: A comparative Exergoeconomic analysis of waste heat recovery from a gas turbine-modular helium reactor via organic Rankine cycles. Sustain. 6(5), 2474–2489 (2014)

    Article  Google Scholar 

  • Shu, G., Liu, L., Tian, H., Wei, H., Xu, X.: Performance comparison and working fluid analysis of subcritical and transcritical dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery. Energy Convers. Manag. 74, 35–43 (2013)

    Article  Google Scholar 

  • Vélez, F., Segovia, J.J., Martín, M.C., Antolín, G., Chejne, F., Quijano, A.: A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renew. Sust. Energ. Rev. 16(6), 4175–4189 (2012)

    Article  Google Scholar 

  • Vetter, C., Wiemer, H.-J., Kuhn, D.: Comparison of sub- and supercritical organic Rankine cycles for power generation from low-temperature/low-enthalpy geothermal wells, considering specific net power output and efficiency. Appl. Therm. Eng. 51(1), 871–879 (2013)

    Article  Google Scholar 

  • Wang, D., Ling, X., Peng, H., Liu, L., Tao, L.: Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation. Energy. 50, 343–352 (2013)

    Article  Google Scholar 

  • Yari, M.: Performance analysis of the different organic Rankine cycles (ORCs) using dry fluids. Int. J. Exergy. 6(3), 323–342 (2009)

    Article  MathSciNet  Google Scholar 

  • Yari, M., Mahmoudi, S.: A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles. Heat Mass Transf. 47(2), 181–196 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khoshbakhti Saray Rahim .

Editor information

Editors and Affiliations

Appendix A: Purchase Equipments Cost (PEC)

Appendix A: Purchase Equipments Cost (PEC)

Governing relations of the purchase equipment cost (PEC) for the system components of GT-HRSG/ORC are as follows:

The cost of equipment purchase of the gas turbine cycle (Bejan and Moran 1996):

Air compressor

$$ {\mathrm{PEC}}_{\mathrm{AC}}=\left(\frac{71.10\ {\dot{m}}_{\mathrm{a}}}{0.9-{\eta}_{\mathrm{sc}}}\right)\ \left({\frac{P_2}{P_1}}_1\right)\ln \frac{P_2}{P_1} $$
(A.1)

Air preheater

PEC APH = 4122 m ̇ g h 5 − h 6 U Δ T lm . aph 0.6 U = 18 W / m 2 K
(A.2)

Combustion chamber

$$ {\mathrm{PEC}}_{\mathrm{CC}}=\frac{46.08\ {\dot{m}}_{\mathrm{a}}}{0.995-\left(\frac{P_4}{P_3}\right)}\left[1+\exp \left(0.018\ {T}_4-26.4\right)\right] $$
(A.3)

Gas turbine

$$ {\displaystyle \begin{array}{l}{\mathrm{PEC}}_{\mathrm{GT}}=\left(\frac{479.34\ {\dot{m}}_{\mathrm{g}}}{0.92-{\eta}_{\mathrm{sc}}}\right)\ln \left(\frac{P_4}{P_5}\right)\\ {}\left[1+\exp \left(0.036\ {T}_4-54.4\right)\right]\kern0.5em \end{array}} $$
(A.4)

Heat recovery steam generator

$$ {\displaystyle \begin{array}{l}{\mathrm{PEC}}_{\mathrm{HRSG}}=6570\ \left[{\left(\frac{{\dot{Q}}_{\mathrm{ec}}}{\Delta {T}_{\mathrm{lm},\mathrm{ec}}}\right)}^{0.8}+{\left(\frac{{\dot{Q}}_{\mathrm{ev}}}{\Delta {T}_{\mathrm{lm},\mathrm{ev}}}\right)}^{0.8}\right]+\\ {}21276{\dot{m}}_{\mathrm{w}}+1184.4{{\dot{m}}_{\mathrm{g}}}^{1.2}\end{array}} $$
(A.5)

Organic Rankine cycle equipment purchase costs:

Pump (Baghernejad and Yaghoubi 2011)

$$ {\mathrm{P}\mathrm{EC}}_{\mathrm{P}}=3540\ {\left({\dot{W}}_{\mathrm{P}}\right)}^{0.71}\kern1.5em $$
(A.6)

Evaporator (Sayyaadi and Nejatolahi 2011)

$$ {\mathrm{PEC}}_{\mathrm{Eva}}=309.143\ \left({A}_{\mathrm{Eva}}\right)+231.915\kern0.5em $$
(A.7)

Turbine (Pierobon et al. 2013)

$$ {\mathrm{PEC}}_{\mathrm{T}}=6000\ \left({{\dot{W}}_{\mathrm{T}}}^{0.7}\right)\kern2em $$
(A.8)

Condenser (Baghernejad and Yaghoubi 2011)

$$ {\mathrm{PEC}}_{\mathrm{Cond}}=1773\ {\dot{m}}_{\mathrm{Steam}}\kern1.75em $$
(A.9)

Internal heat exchanger (Quoilin et al. 2011)

$$ {\mathrm{PEC}}_{\mathrm{IHE}}=1.3\ \left(190+310\ {A}_{\mathrm{IHE}}\right)\kern1.25em $$
(A.10)

The following formula is used to convert the cost of purchasing equipment from the base year to the reference year (Bejan and Moran 1996):

Cost at reference year = original Cost CI reference year CI original year
(A.11)

Here CI is the cost index which their values are given in Table A.1 from 1990 to 2013. In the present work to calculate cost index, Marshall and Swift index is used (Sayyaadi and Nejatolahi 2011).

Table A.1 Marshall and Swift cost index at various years

It is noted that the cost of the gas turbine cycle components is based on 1995, cost of pump and condenser is based on 2011, cost of evaporator is based on 2006, cost of organic Rankine cycle turbine is based on 2013, and cost of internal heat exchanger is based on 2010 in which all the costs have been converted to the equivalent expenses in 2013 by the cost index.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mansureh, K., Rahim, K.S., Keyvan, B. (2018). Multi-objective Optimization of Cogeneration of Power and Heat in a Combined Gas Turbine and Organic Rankine Cycle. In: Aloui, F., Dincer, I. (eds) Exergy for A Better Environment and Improved Sustainability 1. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62572-0_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62572-0_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62571-3

  • Online ISBN: 978-3-319-62572-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics