Skip to main content

Boundary Layer Separation on an Airfoil at a Low Reynolds Number

  • Chapter
  • First Online:
Exergy for A Better Environment and Improved Sustainability 1

Part of the book series: Green Energy and Technology ((GREEN))

  • 1944 Accesses

Abstract

Boundary layer separation on the upper surface of a NACA0012 airfoil at low Reynolds number is numerically investigated. The governing equations are discretized with finite volume method. Second-order Adam-Bashforth and central difference schemes are used for time and space discretization. The boundary layer separation is examined through the velocity profiles, the skin friction distribution, and the flow structure. Beyond an angle of attack of 8°, a small separation region is detected near the trailing edge of the airfoil. As the angle of attack increases, the separation region grows up and moves toward the leading edge. The negative effect of separation on the aerodynamic performance can be seen clearly on the lift and drag distribution as function of the angle of attack. As the separation grows up, the rate of the lift coefficient decreases and the drag coefficient exhibits a substantial increase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam, M., Sandham, N.D.: Direct numerical simulation of short laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 1–28 (2000)

    Article  Google Scholar 

  • Anderson, J.D.: Fundamentals of Aerodynamics, 3rd edn. McGraw-Hill, New York (2007)

    Google Scholar 

  • Anderson, A., Tannehill, C., Pletcher, H.: Computational Fluid Mechanics and Heat Transfer. Hemisphere Publishing Corporation, New York (1984)

    MATH  Google Scholar 

  • Catalano, P.: Aerodynamic Analysis of Low Reynolds Number Flows, Ph.D. Thesis, Aerospatiale Engineering, Napoli University (2009)

    Google Scholar 

  • Chawla, J.S., Suryanarayanan, S., Falzon, B.: Low Reynolds number flow over airfoils, Seminar report, Mechanical Engineering, Indian institute of technology, Bombay (2009)

    Google Scholar 

  • Delafin, P.L., Deniset, F., Asotolfi, J.A.: Effect of the laminar separation bubble induced transition on the hydrodynamic performance of a hydrofoil. Eur. J. Mech. B/Fluids. 46, 190–200 (2014)

    Article  Google Scholar 

  • Grager, T., Rothmayer, A., Hu, H.: Stall suppression of a low-Reynolds-number airfoil with a dynamic burst control plate, 49th AIAA Aerospace science meeting including the new horizons forum and aerospace exposition, Orlando, Florida (2011)

    Google Scholar 

  • Günaydinoglu, E., Kurtulus, D.F.: Effect of vertical translation on unsteady aerodynamics of hovering airfoil, Fifth European Conference on Computational Fluid Dynamics ECCOMAS CFD, Lisbon, Portugal (2010)

    Google Scholar 

  • Hafez, M., Shatalov, A., Wahba, E.: Numerical simulations of incompressible aerodynamic flows using viscous/inviscid interaction procedures. Comput. Methods Appl. Mech. Eng. 195, 3110–3127 (2006)

    Article  MathSciNet  Google Scholar 

  • Hazra, S.B., Jamson, A.: Aerodynamic Shape Optimization of Airfoils in Ultra-low Reynolds Number Flow Using Simultaneous Pseudo-Time Stepping, Aerospace Computing Lab (ACL) Report 2007–4. Stanford University, USA (2007)

    Google Scholar 

  • Kitsios, V., Rodriguez, D., Theofilis, V., Ooi, A., Soria, J.: BiGlobal stability analysis in curvilinear coordinates of massively separated lifting bodies. J. Comput. Phys. 228, 7181–7196 (2009)

    Article  Google Scholar 

  • Koshizuka, S., Oka, Y., Kondo, S.: A staggered differencing technique on boundary curvilinear grids for incompressible flows along curvilinear or slant walls. J. Comput. Mech. 7, 123–136 (1990)

    Article  Google Scholar 

  • Kunz, P.: Aerodynamics and Design for Ultra-Low Reynolds Number Flight, Ph.D. Thesis, Stanford university (2003)

    Google Scholar 

  • Mahbub, M.D., Zhou, Y., Yang, H.V.: The ultra-low Reynolds number airfoil wake. Exp. Fluids. 48, 81–103 (2010)

    Article  Google Scholar 

  • Neel, R.E.: Advances in Computational Fluid Dynamic Turbulent Separated Flows and Transonic Potential Flows, Ph.D. Thesis, Mechanical Department, Univ. of state (1997)

    Google Scholar 

  • Patankar, V.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, New York, USA (1980)

    Book  Google Scholar 

  • Rajakumar, S., Ravindran, D.: Computational fluid dynamics of wind turbine blade at various angles of attack and low Reynolds number. Int. J. Eng. Sci. Technol. 2(11), 6474–6484 (2010)

    Google Scholar 

  • Sathaye, S.S.: Lift Distribution on Low Aspect Ratio Wings at Low Reynolds Numbers, Master’s Thesis, Worcester Polytechnic Institute (2004)

    Google Scholar 

  • Shan, H., Jiang, L., Liu, C.: Direct numerical simulation of flow separation around a NACA0012 airfoil. Comput. Fluids. 34, 1096–1114 (2005)

    Article  Google Scholar 

  • Shyy, W., et al.: Computational Aerodynamics of low Reynolds number Plunging, Pitching and Flexible Wings for MAV Applications, 46th AIAA Aerospace science meeting and exhibit, 7–10 January 2008, Reo, NEVADA (2008)

    Google Scholar 

  • Versteeg, K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: the Finite Volume Method. Longman Group Ltd, Harlow, England (1995)

    Google Scholar 

  • Yarusevych, S., Kawall, J.G., Sullivan, P.E.: Separated-Shear-Layer development on an airfoil at low Reynolds numbers. AIAA J. 46(12), 3060–3069 (2008)

    Article  Google Scholar 

  • Yuan, W., Khalid, M., Windte, J., Scholz, U., Radespiel, R.: Computational and experimental investigations of low-Reynolds-number flows past an airfoil. Aeronaut. J. 111(1115), 17–29 (2007)

    Article  Google Scholar 

  • Zhou, Y., Alam, M., Yang, X., Guo, H., Wood, H.: Fluid forces on a very low Reynolds number airfoil and their prediction. Int. J. Heat Fluid Flow. 32, 329–339 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhafid Bounecer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bounecer, A., Bahi, L. (2018). Boundary Layer Separation on an Airfoil at a Low Reynolds Number. In: Aloui, F., Dincer, I. (eds) Exergy for A Better Environment and Improved Sustainability 1. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62572-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62572-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62571-3

  • Online ISBN: 978-3-319-62572-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics