Skip to main content

Big Data and Kidney Transplantation: Basic Concepts and Initial Experiences

  • Chapter
  • First Online:
Technological Advances in Organ Transplantation

Abstract

We live in a data-rich world that is ever expanding, and the field of medicine has become particularly enriched with data from the electronic health record (EHR) and from sensors such as EKG monitors, glucometers, and pacemakers. Big Data is a term that is now frequently encountered in both the lay press and the technical literature and is best defined by the extreme volume, variety, or velocity of data. Large relational databases alone do not equate to Big Data (Table 13.2 and see discussion that follows). The magnitude of the data explosion that we live in consciously or unconsciously is underscored, which is outlined throughout this chapter. As a specific example this ever-growing field can have, we will use our recent inquiry into predicting kidney transplant outcomes using a big data approach and discuss the applicability of big data techniques in clinical transplantation.

This chapter is an in-depth review of content published in the American Journal of Transplantation. Srinivas et al. Big Data, Predictive Analytics, and Quality Improvement in Kidney Transplantation: A Proof of Concept. AJT. 17:3;March 2017. 671–681.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AUC-ROC:

Area Under the Curve-Receiver Operating Characteristic Curve

BK:

BK Virus

BMI:

Body Mass Index

BP:

Blood Pressure

CI:

Confidence Interval

CMV:

Cytomegalovirus

DGF:

Delayed Graft Function

eGFR:

Estimated Glomerular Filtration Rate

EHR:

Electronic Health Record

GL:

Graft Loss

HGB:

Hemoglobin

ICD-9:

International Classification of Diseases

KDRI:

Kidney Donor Risk Index

Max:

Maximum

MI:

Myocardial Infarction

NLP:

Natural Language Processing

OR:

Odds Ratio

PCR:

Polymerase Chain Reaction

SBP:

Systolic Blood Pressure

SRTR:

Scientific Registry of Transplant Recipients

Tx Database:

Transplant Database

UNOS:

United Network for Organ Sharing

References

  1. Kaplan, B., Schold, J., & Meier-Kriesche, H. U. (2003). Overview of large database analysis in renal transplantation. American Journal of Transplantation, 3, 1052–1056.

    Article  PubMed  Google Scholar 

  2. Taber, D. J., Palanisamy, A. P., Srinivas, T. R., et al. (2015). Inclusion of dynamic clinical data improves the predictive performance of a 30-day readmission risk model in kidney transplantation. Transplantation, 99, 324–330.

    Article  PubMed  PubMed Central  Google Scholar 

  3. McAdams-Demarco, M. A., Grams, M. E., King, E., Desai, N. M., & Segev, D. L. (2014). Sequelae of early hospital readmission after kidney transplantation. American Journal of Transplantation, 14, 397–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. IBM White Paper. (2016). 5 Steps to becoming a data-driven healthcare organization. In (pp. 1–7). Somers, NY: IBM Corporation.https://assets.sourcemedia.com/00/f5/b8f107cf478296eaa937a413581c/imw14682usen.PDF

    Google Scholar 

  5. Racusen, L. C., Solez, K., Colvin, R. B., et al. (1999). The Banff 97 working classification of renal allograft pathology. Kidney International, 55, 713–723.

    Article  CAS  PubMed  Google Scholar 

  6. Quan, H., Sundararajan, V., Halfon, P., et al. (2005). Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Medical Care, 43, 1130–1139.

    Article  PubMed  Google Scholar 

  7. Charlson, M. E., & Feinstein, A. R. (1974). The auxometric dimension. A new method for using rate of growth in prognostic staging of breast cancer. JAMA, 228, 180–185.

    Article  CAS  PubMed  Google Scholar 

  8. Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80, 27–38.

    Article  Google Scholar 

  9. Heinze, G. A. (2002). A solution to the problem of separation in logistic regression. Statistics in Medicine, 21, 2409–2419.

    Article  PubMed  Google Scholar 

  10. Heinze, G. A. (2006). A comparative investigation of methods for logistic regression with separated or nearly separated data. Statistics in Medicine, 25, 4216–4226.

    Article  PubMed  Google Scholar 

  11. Harrell, F. E., Jr., Lee, K. L., & Mark, D. B. (1996). Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine, 15, 361–387.

    Article  PubMed  Google Scholar 

  12. SRTR Risk Adjustment Model Documentationr Waiting List and Post-Transplant Outcomes. (2016). http://www.srtr.org/csr/current/modtabs.aspx. Accessed 16 June 2016.

  13. Rao, P. S., Schaubel, D. E., Guidinger, M. K., et al. (2009). A comprehensive risk quantification score for deceased donor kidneys: The kidney donor risk index. Transplantation, 88, 231–236.

    Article  PubMed  Google Scholar 

  14. Amann, K., Wanner, C., & Ritz, E. (2006). Cross-talk between the kidney and the cardiovascular system. Journals of the American Society of Nephrology, 17, 2112–2119.

    Article  CAS  Google Scholar 

  15. Chang, T. I., Tabada, G. H., Yang, J., Tan, T. C., & Go, A. S. (2016). Visit-to-visit variability of blood pressure and death, end-stage renal disease, and cardiovascular events in patients with chronic kidney disease. Journal of Hypertension, 34, 244–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson, R. J., Rodriguez-Iturbe, B., Kang, D. H., Feig, D. I., & Herrera-Acosta, J. (2005). A unifying pathway for essential hypertension. American Journal of Hypertension, 18, 431–440.

    Article  PubMed  Google Scholar 

  17. Meier-Kriesche, H. U., Schold, J. D., Srinivas, T. R., Reed, A., & Kaplan, B. (2004). Kidney transplantation halts cardiovascular disease progression in patients with end-stage renal disease. American Journal of Transplantation, 4, 1662–1668.

    Article  PubMed  Google Scholar 

  18. Wan, S. S., Cantarovich, M., Mucsi, I., Baran, D., Paraskevas, S., & Tchervenkov, J. (2016). Early renal function recovery and long-term graft survival in kidney transplantation. Transplant International, 29, 619–626.

    Article  CAS  PubMed  Google Scholar 

  19. Elfadawy, N., Flechner, S. M., Liu, X., et al. (2013). CMV Viremia is associated with a decreased incidence of BKV reactivation after kidney and kidney-pancreas transplantation. Transplantation, 96, 1097–1103.

    Article  PubMed  Google Scholar 

  20. Gonzales, M. M., Bentall, A., Kremers, W. K., Stegall, M. D., & Borrows, R. (2016). Predicting individual renal allograft outcomes using risk models with 1-year surveillance biopsy and alloantibody data. Journals of the American Society of Nephrology, 27(10), 3165–3174.

    Article  Google Scholar 

  21. Goldfarb-Rumyantzev, A. S., Rout, P., Sandhu, G. S., Khattak, M., Tang, H., & Barenbaum, A. (2010). Association between social adaptability index and survival of patients with chronic kidney disease. Nephrology, Dialysis, Transplantation, 25, 3672–3681.

    Article  PubMed  Google Scholar 

  22. Taber, D. J., Hamedi, M., Rodrigue, J. R., et al. (2016). Quantifying the race stratified impact of socioeconomics on graft outcomes in kidney transplant recipients. Transplantation, 100(7), 1550–1557.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Evans, R. S., Benuzillo, J., Horne, B. D., et al. (2016). Automated identification and predictive tools to help identify high-risk heart failure patients: Pilot evaluation. Journal of the American Medical Informatics Association, 23(5), 872–878.

    Article  PubMed  Google Scholar 

  24. Srinivas, T. R., Taber, D. J., Su, Z., et al. (2017). Big data, predictive analytics and quality improvement in kidney transplantation: A proof of concept. American Journal of Transplantation, 17, 671–681.

    Article  CAS  PubMed  Google Scholar 

  25. Hurwitz JS, Kaufman M, Bowles A in Cognitive Computing and Big Data Analytics. Wiley (Indianapolis) 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titte R. Srinivas MD, FAST .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taber, D.J., Mathur, A.K., Srinivas, T.R. (2017). Big Data and Kidney Transplantation: Basic Concepts and Initial Experiences. In: Nadig, S., Wertheim, J. (eds) Technological Advances in Organ Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-62142-5_13

Download citation

Publish with us

Policies and ethics