Skip to main content

3D Bioprinting in Transplantation

  • Chapter
  • First Online:
Technological Advances in Organ Transplantation

Abstract

The continued rise in patients suffering from organ failure has raised the need for additional sources for replacement organs to improve the quality of life for these patients. Organ transplantation is the standard of care for end-stage organ disease, and as such, there has been an ever-increasing need worldwide to find suitable grafts for those patients.

In the last decade, the field of biomedical engineering has made important technological advances in tissue bioengineering through the use of three-dimensional bioprinting. These innovative advances have contributed to developing biocompatible materials and supporting scaffolds that allow the production of functional tissues and printed organ models. 3D printing in medicine could eventually allow the application of printed tissues and organs to replace damaged or irreparable grafts from trauma or disease. Using these new and emerging additive-manufacturing technologies, it is hoped to be able to implant printed synthetics for end-stage organ disease (ESOD) and help with the shortage of viable organs for transplantation.

Multiple bioprinter configurations for tissue printing along with printing techniques have emerged to revolutionize the creation of 3D biostructures. Current advances of tissue bioengineering strive to allow for self-assembly of cells and tissues to become a reality, which would augment the possibility of generating new graft models. Around the world, scientists have developed vascular grafts, liver, kidney, and heart models that are in various stages of development and in some cases have been implanted in animal models. Many years of work are still to come in order for these basic models to be useful for human implantation.

Ultimately, the goal of developing bioprinted tissues and organs is to overcome the shortage of available grafts. Furthermore, these replacement tissues could be made of cells from the donor, thereby reducing the risk of rejection and the levels of immunosuppressive agents being used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Alkhouri, N., & Zein, N. N. (2016). Three-dimensional printing and pediatric liver disease. Current Opinion in Pediatrics, 28, 626–630.

    Article  CAS  PubMed  Google Scholar 

  2. Atala, A., Bauer, S. B., Soker, S., Yoo, J. J., & Retik, A. B. (2006). Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 367, 1241–1246.

    Article  PubMed  Google Scholar 

  3. Bertassoni, L. E., Cardoso, J. C., Manoharan, V., Cristino, A. L., Bhise, N. S., Araujo, W. A., Zorlutuna, P., Vrana, N. E., Ghaemmaghami, A. M., Dokmeci, M. R., & Khademhosseini, A. (2014). Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication, 6, 024105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Catros, S., Fricain, J. C., Guillotin, B., Pippenger, B., Bareille, R., Remy, M., Lebraud, E., Desbat, B., Amedee, J., & Guillemot, F. (2011). Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication, 3, 025001.

    Article  CAS  PubMed  Google Scholar 

  5. Chang, C. C., Boland, E. D., Williams, S. K., & Hoying, J. B. (2011). Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 98, 160–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chia, H. N., & Wu, B. M. (2015). Recent advances in 3D printing of biomaterials. Journal of Biological Engineering, 9, 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gui, L., Boyle, M. J., Kamin, Y. M., Huang, A. H., Starcher, B. C., Miller, C. A., Vishnevetsky, M. J., & Niklason, L. E. (2014). Construction of tissue-engineered small-diameter vascular grafts in fibrin scaffolds in 30 days. Tissue Engineering. Part A, 20, 1499–1507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gui, L., & Niklason, L. E. (2014). Vascular tissue engineering: Building Perfusable vasculature for implantation. Current Opinion in Chemical Engineering, 3, 68–74.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Guillotin, B., Souquet, A., CATROS, S., Duocastella, M., Pippenger, B., Bellance, S., Bareille, R., Remy, M., Bordenave, L., Amedee, J., & Guillemot, F. (2010). Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 31, 7250–7256.

    Article  CAS  PubMed  Google Scholar 

  10. Hasan, A., PAUL, A., Vrana, N. E., Zhao, X., Memic, A., Hwang, Y. S., Dokmeci, M. R., & Khademhosseini, A. (2014). Microfluidic techniques for development of 3D vascularized tissue. Biomaterials, 35, 7308–7325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Homan, K. A., Kolesky, D. B., Skylar-Scott, M. A., Herrmann, J., Obuobi, H., Moisan, A., & Lewis, J. A. (2016). Bioprinting of 3D convoluted renal proximal tubules on Perfusable chips. Scientific Reports, 6, 34845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jakab, K., Norotte, C., Marga, F., Murphy, K., Vunjak-Novakovic, G., & Forgacs, G. (2010). Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2, 022001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. King, S., Creasey, O., Presnell, S., & Nguyen, D. (2015). Design and characterization of a multicellular, three-dimensional (3D) tissue model of the human kidney proximal tubule. The FASEB Journal, 29(1 Supplement), LB426.

    Google Scholar 

  14. Klammert, U., Vorndran, E., Reuther, T., Muller, F. A., Zorn, K., & Gbureck, U. (2010). Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing. Journal of Materials Science. Materials in Medicine, 21, 2947–2953.

    Article  CAS  PubMed  Google Scholar 

  15. Kolesky, D. B., Truby, R. L., Gladman, A. S., Busbee, T. A., Homan, K. A., & Lewis, J. A. (2014). 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Advanced Materials, 26, 3124–3130.

    Article  CAS  PubMed  Google Scholar 

  16. Mannoor, M. S., Jiang, Z. W., James, T., Kong, Y. L., Malatesta, K. A., Soboyejo, W. O., Verma, N., Gracias, D. H., & Mcalpine, M. C. (2013). 3D printed bionic ears. Nano Letters, 13, 2634–2639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McCallen, J. D., Schaefer, A., Lee, P., Hing, L., & Lai, S. K. (2017). Stereolithography-Based 3D Printed “Pillar Plates” that Minimizes Fluid Transfers During Enzyme Linked Immunosorbent Assays. Annals of biomedical engineering, 45(4), 982–989.

    Article  PubMed  Google Scholar 

  18. Miller, J. S., Stevens, K. R., Yang, M. T., Baker, B. M., Nguyen, D. H., Cohen, D. M., Toro, E., Chen, A. A., Galie, P. A., Yu, X., Chaturvedi, R., Bhatia, S. N., & Chen, C. S. (2012). Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nature Materials, 11, 768–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mironov, V. (2003). Printing technology to produce living tissue. Expert Opinion on Biological Therapy, 3, 701–704.

    Article  PubMed  Google Scholar 

  20. Mironov, V., Visconti, R. P., Kasyanov, V., Forgacs, G., Drake, C. J., & Markwald, R. R. (2009). Organ printing: Tissue spheroids as building blocks. Biomaterials, 30, 2164–2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Munoz-Abraham, A. S., Rodriguez-Davalos, M. I., Bertacco, A., Wengerter, B., Geibel, J. P., & Mulligan, D. C. (2016). 3D printing of organs for transplantation: Where are we and where are we heading? Current Transplantation Reports, 3, 93–99.

    Article  Google Scholar 

  22. Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32, 773–785.

    Article  CAS  PubMed  Google Scholar 

  23. Norotte, C., Marga, F. S., Niklason, L. E., & Forgacs, G. (2009). Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, 30, 5910–5917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Organovo. 2015. The bioprinting process.

    Google Scholar 

  25. Rengier, F., Mehndiratta, A., Von Tengg-Kobligk, H., Zechmann, C. M., Unterhinninghofen, R., Kauczor, H. U., & Giesel, F. L. (2010). 3D printing based on imaging data: Review of medical applications. International Journal of Computer Assisted Radiology and Surgery, 5, 335–341.

    Article  CAS  PubMed  Google Scholar 

  26. Robbins, J. B., Gorgen, V., Min, P., Shepherd, B. R., & Presnell, S. C. (2013). A novel in vitro three-dimensional bioprinted liver tissue system for drug development. FASEB Journal, 27.

    Google Scholar 

  27. Segev, D. L., Muzaale, A. D., Caffo, B. S., Mehta, S. H., Singer, A. L., Taranto, S. E., Mcbride, M. A., & Montgomery, R. A. (2010). Perioperative mortality and long-term survival following live kidney donation. JAMA, 303, 959–966.

    Article  CAS  PubMed  Google Scholar 

  28. Song, J. J., Guyette, J. P., Gilpin, S. E., Gonzalez, G., Vacanti, J. P., & Ott, H. C. (2013). Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nature Medicine, 19, 646–651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Soto-Gutierrez, A., Wertheim, J. A., Ott, H. C., & Gilbert, T. W. (2012). Perspectives on whole-organ assembly: Moving toward transplantation on demand. The Journal of Clinical Investigation, 122, 3817–3823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stanton, M. M., Samitier, J., & Sanchez, S. (2015). Bioprinting of 3D hydrogels. Lab on a Chip, 15, 3111–3115.

    Article  CAS  PubMed  Google Scholar 

  31. Sun, W., Starly, B., Darling, A., & Gomez, C. (2004). Computer-aided tissue engineering: Application to biomimetic modelling and design of tissue scaffolds. Biotechnology and Applied Biochemistry, 39, 49–58.

    Article  CAS  PubMed  Google Scholar 

  32. Utrecht, U. 3D-Printed Skull Impanted In Patient. 2014 [cited 2015 2015]; Available from: http://www.umcutrecht.nl/en/Research/News/3D-printed-skull-implanted-in-patient.

    Google Scholar 

  33. Wengerter, B. C., Emre, G., Park, J. Y., & Geibel, J. (2016). Three-dimensional printing in the intestine. Clinical Gastroenterology and Hepatology, 14, 1081–1085.

    Article  PubMed  Google Scholar 

  34. Yagi, H., Fukumitsu, K., Fukuda, K., Kitago, M., Shinoda, M., Obara, H., Itano, O., Kawachi, S., Tanabe, M., Coudriet, G. M., Piganelli, J. D., Gilbert, T. W., Soto-Gutierrez, A., & Kitagawa, Y. (2013). Human-scale whole-organ bioengineering for liver transplantation: A regenerative medicine approach. Cell Transplantation, 22, 231–242.

    Article  PubMed  Google Scholar 

  35. Zhang, X. Y., & Zhang, Y. D. (2015). Tissue engineering applications of three-dimensional Bioprinting. Cell Biochemistry and Biophysics, 72, 777–782.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Y. S., Arneri, A., Bersini, S., Shin, S. R., Zhu, K., Goli-Malekabadi, Z., Aleman, J., Colosi, C., Busignani, F., Dell'erba, V., Bishop, C., Shupe, T., Demarchi, D., Moretti, M., Rasponi, M., Dokmeci, M. R., Atala, A., & Khademhosseini, A. (2016). Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 110, 45–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Mulligan MD, FACS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Munoz-Abraham, A.S., Ibarra, C., Agarwal, R., Geibel, J., Mulligan, D.C. (2017). 3D Bioprinting in Transplantation. In: Nadig, S., Wertheim, J. (eds) Technological Advances in Organ Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-62142-5_11

Download citation

Publish with us

Policies and ethics