Skip to main content

Genetic Variability in Wild Populations and Farmed Broodstocks of the Siberian Sturgeon in Russia

  • Chapter
  • First Online:
The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 2 - Farming

Abstract

In this chapter, we cover different genetic aspects of A. baerii. Phylogenetic position of Siberian sturgeon among other Acipenseriformes, genomic organization, and events of polyploidization are discussed. Genetic variation in four natural populations of the Siberian sturgeon (rivers Ob, Yenisei and Lena and Lake Baikal) is assessed for mitochondrial (control region or D-loop) and nuclear (microsatellite loci) markers. Most of A. baerii stocks reared at sturgeon farms in Russia have decreased genetic variation compared with wild populations. Two genetically distinct groups of stocks, both originated at Konakovo hatchery, are now widely distributed across sturgeon farms in Russia. Origin of “baerii-like” haplotype in the Caspian population of the Russian sturgeon is discussed in context of A. baerii paleogeography as well method for identification of each species by mtDNA analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barmintseva AE, Mugue NS (2013) The use of microsatellite loci for identification of sturgeon species (Acipenseridae) and hybrid forms. Genetika 49(9):950–961

    CAS  Google Scholar 

  • Birstein VJ, DeSalle R (1998) Molecular phylogeny of Acipenserinae. Mol Phylogenet Evol 9(1):141–155

    Article  CAS  Google Scholar 

  • Birstein VJ, Poletaev AI, Goncharov BF (1993) DNA content in Eurasian sturgeon species determined by flow cytometry. Cytometry 14(4):377–383

    Article  CAS  Google Scholar 

  • Birstein VJ, Hanner R, DeSalle R (1997) Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches. In: Sturgeon biodiversity and conservation. Kluwer Academic Publishers, Dordrecht, pp 127–155

    Chapter  Google Scholar 

  • Birstein VJ, Doukakis P, Sorkin B, Desalle R (1998) Population aggregation analysis of three caviar-producing species of sturgeons and implications for the species identification of black caviar. Conserv Biol 12(4):766–775

    Article  Google Scholar 

  • Birstein VJ, Doukakis P, DeSalle R (1999) Molecular phylogeny of Acipenserinae and black caviar species identification. J Appl Ichthyol 15:12–16

    Article  Google Scholar 

  • Birstein VJ, Doukakis P, DeSalle R (2000) Polyphyly of mtDNA lineages in the Russian sturgeon, Acipenser gueldenstaedtii: forensic and evolutionary implications. Conserv Genet 1(1):81–88

    Article  CAS  Google Scholar 

  • Birstein VJ, Doukakis P, DeSalle R (2002) Molecular phylogeny of Acipenseridae: nonmonophyly of Scaphirhynchinae. Copeia 2002(2):287–301

    Article  Google Scholar 

  • Birstein VJ, Ruban G, Ludwig A, Doukakis P, DeSalle R (2005) The enigmatic Caspian Sea Russian sturgeon: how many cryptic forms does it contain? Syst Biodivers 3(2):203–218

    Article  Google Scholar 

  • Birstein VJ, Desalle R, Doukakis P, Hanner R, Ruban GI, Wong E (2009) Testing taxonomic boundaries and the limit of DNA barcoding in the Siberian sturgeon, Acipenser baerii. Mitochondrial DNA 20(5–6):110–118

    Article  CAS  Google Scholar 

  • Boscari E, Barmintseva A, Pujolar JM, Doukakis P, Mugue N, Congiu L (2014) Species and hybrid identification of sturgeon caviar: a new molecular approach to detect illegal trade. Mol Ecol Resour 14(3):489–498

    Article  CAS  Google Scholar 

  • Brandt JF (1869) Einige Worte uber die europaisch-asiatischen Storarten (Sturionides), von Johann Friedrich Brandt (Lu le 20 mai 1869). Bulletin de L’Academie Imperiale des Sciences De St.-Petersbourg 14:171–175

    Google Scholar 

  • Bronzi P, Rosenthal H, Gessner J (2011) Global sturgeon aquaculture production: an overview. J Appl Ichthyol 27:169–175

    Article  Google Scholar 

  • Brown GG, Gadaleta G, Pepe G, Saccone C, Sbisa E (1986) Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J Mol Biol 192(3):503–511

    Article  CAS  Google Scholar 

  • Brown JR, Beckenbach K, Beckenbach AT, Smith MJ (1996) Length variation, heteroplasmy and sequence divergence in the mitochondrial DNA of four species of sturgeon (Acipenser). Genetics 142(2):525–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buroker NE, Brown JR, Gilbert TA, O'Hara PJ, Beckenbach AT, Thomas WK, Smith MJ (1990) Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. Genetics 124(1):157–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XW, Jiang S, Shi ZY, Li Q, Xun XR, Guo da Q (2012) Mitochondrial genome of the Siberian sturgeon Acipenser baerii. Mitochondrial DNA 23(2):120–122

    Article  CAS  Google Scholar 

  • Clavelli F (2005) National aquaculture sector overview. Uruguay National Aquaculture Sector Overview Fact Sheets FAO Fisheries and Aquaculture Department [online] Rome. Updated 1 February 2005. http://www.fao.org/fishery/countrysector/naso_uruguay/en

  • Debus L, Winkler M, Billard R (2002) Structure of micropyle surface on oocytes and caviar grains in sturgeons. Int Rev Hydrobiol 87(5–6):585–603

    Article  Google Scholar 

  • DeSalle R, Birstein VJ (1996) PCR identification of black caviar. Nature 381:197–198

    Article  CAS  Google Scholar 

  • Fain SR, LeMay JP, Shafer J, Hoesch RM, Hamlin BH (2000) The development of a DNA procedure for the forensic identification of caviar. National Fish and Wildlife Forensics Laboratory.Final report, p.1–20

    Google Scholar 

  • Fontana F, Zane L, Pepe A, Congiu L (2007) Polyploidy in Acipenseriformes: cytogenetic and molecular approaches. In: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds) Fish cytogenetics. Science Publisher, Enfield, Inc, Hampshire, USA, pp 385–403

    Google Scholar 

  • Havelka M, Hulák M, Bailie DA, Prodöhl PA, Flajšhans M (2013) Extensive genome duplications in sturgeons: new evidence from microsatellite data. J Appl Ichthyol 29(4):704–708

    Article  Google Scholar 

  • Havelka M, Hulak M, Rab P, Rabova M, Lieckfeldt D, Ludwig A, Rodina M, Gela D, Psenicka M, Bytyutskyy D, Flajshans M (2014) Fertility of a spontaneous hexaploid male Siberian sturgeon, Acipenser baerii. BMC Genet 15:5

    Article  Google Scholar 

  • Havelka M, Bytyutskyy D, Symonová R, Ráb P, Flajšhans M (2016) The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity. Genet Sel Evol 48:12

    Article  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc B Biol Sci 270(1512):313–321

    Article  CAS  Google Scholar 

  • Henderson-Arzapalo A, King TL (2002) Novel microsatellite markers for Atlantic sturgeon (Acipenser oxyrinchus) population delineation and broodstock management. Mol Ecol Notes 2:437–439

    Article  CAS  Google Scholar 

  • Henriksen M, Mangerud J, Matiouchkov A, Murray AS, Paus A, Svendsen JI (2008) Intriguing climatic shifts in a 90 kyr old lake record from northern Russia. Boreas 37:20–37

    Article  Google Scholar 

  • Herran R, Fontana F, Lanfredi M, Congiu L, Leis M, Rossi R, Rejon CR, Rejon MR, Garrido-Ramos MA (2001) Slow rates of evolution and sequence homogenization in an ancient satellite DNA family of sturgeons. Mol Biol Evol 18(1):432–436

    Article  Google Scholar 

  • Hilton EJ (2005) Observations on the skulls of sturgeons (Acipenseridae): shared similarities of Pseudoscaphirhynchus kaufmanni and juvenile specimens of Acipenser stellatus. Environ Biol Fish 72(2):135–144

    Article  Google Scholar 

  • Jenneckens I, Meyer J-N, Debus L, Pitra C, Ludwig A (2000) Evidence of mitochondrial DNA clones of Siberian sturgeon, Acipenser baerii, within Russian sturgeon, Acipenser gueldenstaedtii, caught in the River Volga. Ecol Lett 3(6):503–508

    Article  Google Scholar 

  • Kim DS, Nam YK, Noh JK, Park CH, Chapman FA (2005) Karyotype of North American shortnose sturgeon Acipenser brevirostrum with the highest chromosome number in the Acipenseriformes. Ichthyol Res 52:94–97

    Article  Google Scholar 

  • Krieger J, Fuerst PA (2002) Evidence for a slowed rate of molecular evolution in the order acipenseriformes. Mol Biol Evol 19(6):891–897

    Article  CAS  Google Scholar 

  • Krieger J, Hett AK, Fuerst PA, Artyukhin EA, Ludwig A (2008) The molecular phylogeny of the order Acipenseriformes revised. J Appl Ichthyol 24(s1):36–45

    Article  Google Scholar 

  • Lee WJ, Conroy J, Howell WH, Kocher TD (1995) Structure and evolution of teleost mitochondrial control regions. J Mol Evol 41(1):54–66

    Article  CAS  Google Scholar 

  • Ludwig A (2008) Identification of Acipenseriformes species in trade. J Appl Ichthyol 24(s1):2–19

    Article  Google Scholar 

  • Ludwig A, May B, Debus L, Jenneckens I (2000) Heteroplasmy in the mtDNA control region of sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 156(4):1933–1947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig A, Belfiore NM, Pitra C, Svirsky V, Jenneckens I (2001) Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 158(3):1203–1215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig A, Debus L, Jenneckens I (2002) A molecular approach to control the international trade in black caviar. Int Rev Hydrobiol 87(5–6):661–674

    Article  CAS  Google Scholar 

  • Ludwig A, Lippold S, Debus L, Reinartz R (2009) First evidence of hybridization between endangered sterlets (Acipenser ruthenus) and exotic Siberian sturgeons (Acipenser baerii) in the Danube River. Biol Invasions 11:753–760

    Article  Google Scholar 

  • Malyutin VS, Ruban GI (2009) On the history of fish husbandry of Siberian sturgeon Acipenser baerii from the Lena River for acclimatization and commercial cultivation. J Ichthyol 49(5):376–382

    Article  Google Scholar 

  • Mangerud J, Astakhov V, Jakobsson M, Svendsen JI (2001) Huge Ice-age lakes in Russia. J Quat Sci 16(8):773–777

    Article  Google Scholar 

  • Mangerud J, Jakobsson M, Alexandersonk H, Astakhov V, Clarkee GKC, Henriksena M, Hjortc C, Krinnerf G, Lunkka J-P, Moller P, Murray A, Nikolskaya O, Saarnisto M, Svendsen JI (2004) Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the Last Glaciation. Quat Sci Rev 23:1313–1332

    Article  Google Scholar 

  • Miracle AL, Campton DE (1995) Tandem repeat sequence variation and length heteroplasmy in the mitochondrial DNA D-loop of the threatened Gulf of Mexico sturgeon, Acipenser oxyrinchus desotoi. J Hered 86(1):22–27

    Article  CAS  Google Scholar 

  • Mugue NS, Barmintseva AE, Rastorguev SM, Mugue VN, Barmintsev VA (2008) Polymorphism of the mitochondrial DNA control region in eight sturgeon species and development of a system for DNA-based species identification. Russ J Genet 44(7):793–798

    Article  CAS  Google Scholar 

  • Nikolsky AM (1896) Siberian sturgeon Acipenser Stenorhynchus sp. Nov. Annuals of Zoological Museum of Russian Academy of Sciences, St Petersburg 1:400–405

    Google Scholar 

  • Nikolyukin NI (1972) Remote hybridization of sturgeons and teleosts. Pishchevaya Promyshlennost, Moscow, 335p

    Google Scholar 

  • Peng Z, Ludwig A, Wang DQ, Diogo R, Wei Q, He S (2007) Age and biogeography of major clades in sturgeons and paddlefishes (Pisces: Acipenseriformes). Mol Phylogenet Evol 42(3):854–862

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9(3):552–569

    CAS  PubMed  Google Scholar 

  • Ruban G (2005) The Siberian sturgeon Acipenser baerii Brandt: species structure and ecology. World Sturgeon Conservation Society—Special Publication No 1. Norderstedt (Germany)

    Google Scholar 

  • Ruban G, Khodorevskaya RP (2011) Caspian Sea sturgeon fishery: a historic overview. J Appl Ichthyol 27:199–208

    Article  Google Scholar 

  • Sokolov LI, Vasil’ev VP (1989) Acipenser baerii Brandt, 1869. In: Holcik J (ed) The freshwater fishes of Europe, Part II, vol 1. AULA-Verlag, Wiesbaden, pp 263–284

    Google Scholar 

  • Timoshkina NN, Barmintseva AE, Usatov AV, Mugue NS (2009) Intraspecific genetic polymorphism of Russian sturgeon Acipenser gueldenstaedtii. Russ J Genet 45(9):1098–1106

    Article  CAS  Google Scholar 

  • Vasil’ev V (2009) Mechanisms of polyploid evolution in fish: polyploidy in sturgeons. In: Carmona R, Domezain A, García-Gallego M, Hernando J, Rodríguez F, Ruiz-Rejón M (eds) Biology, conservation and sustainable development of sturgeons, Fish and fisheries series, vol 29. Springer, Netherlands, pp 97–117

    Chapter  Google Scholar 

  • Vasil’ev VP, Vasil'eva ED, Shedko SV, Novomodny GV (2009) Ploidy levels in the kaluga, Huso dauricus and Sakhalin sturgeon Acipenser mikadoi (Acipenseridae, Pisces). Dokl Biol Sci 426(1):228–231

    Article  Google Scholar 

  • Vecsei P, Charette R, Hochleithner M (2001) Guide to the identification of sturgeon and paddlefish species controlled under the Convention on International Trade in Endangered Species of Wild Fauna and Flora, CITES

    Google Scholar 

  • Vishnyakova KS, Mugue NS, Zelenina DA, Mikodina EV, Kovaleva OA, Madan GV, Yegorov YE (2008) Cell culture and karyotype of Sakhalin sturgeon Acipenser mikadoi. Biochem (Mosc) Suppl Ser A Membr Cell Biol 3(1):42–54

    Article  Google Scholar 

  • Wei QW, Zou Y, Li P, Li L (2011) Sturgeon aquaculture in China: progress, strategies and prospects assessed on the basis of nation-wide surveys (2007–2009). J Appl Ichthyol 27:162–168

    Article  Google Scholar 

  • Weiperth A, Csányi B, György ÁI, Szekeres J, Friedrich T, Szalóky Z (2014) Observation of the sturgeon hybrid (Acipenser naccarii x Acipenser baerii) in the Hungarian section of River Danube. Pisces Hungarici 8:111–112

    Google Scholar 

  • Welsh AB, Blumberg M, May B (2003) Identification of microsatellite loci in lake sturgeon, Acipenser fulvescens, and their variability in green sturgeon, A. medirostris. Mol Ecol Notes 3:47–55

    Article  CAS  Google Scholar 

  • Williot P, Rouault T (1982) Compte rendu d’une première reproduction en France de l'esturgeon sibérien Acipenser baerii. Bull Fr Piscic 286:255–261

    Article  Google Scholar 

  • Williot P, Sabeau L, Gessner J, Arlati G, Bronzi P, Gulyas T, Berni P (2001) Sturgeon farming in Western Europe: recent developments and perspectives. Aquat Living Resour 14(6):367–374

    Article  Google Scholar 

  • Zakharov AB, Tumanov MD, Shalaev SN (2007) Siberian sturgeon Acipenser baerii in the river Pechora. J Ichthyol 47(3):222–227

    Article  Google Scholar 

  • Zane L, Patarnello T, Ludwig A, Fontana F, Congiu L (2002) Isolation and characterization of microsatellites in the Adriatic sturgeon (Acipenser naccarii). Mol Ecol Notes 2(4):586–588

    Article  CAS  Google Scholar 

  • Zhang X, Wu W, Li L, Ma X, Chen J (2013) Genetic variation and relationships of seven sturgeon species and ten interspecific hybrids. Genet Sel Evol 45:21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Mugue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Mugue, N., Barmintseva, A. (2018). Genetic Variability in Wild Populations and Farmed Broodstocks of the Siberian Sturgeon in Russia. In: Williot, P., Nonnotte, G., Chebanov, M. (eds) The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 2 - Farming. Springer, Cham. https://doi.org/10.1007/978-3-319-61676-6_17

Download citation

Publish with us

Policies and ethics