Skip to main content

Genome Manipulation and Sex Control in the Siberian Sturgeon: An Updated Synthesis with Regard to Objectives, Constraints and Findings

  • Chapter
  • First Online:

Abstract

The genome manipulations, such as gynogenesis or androgenesis, are widely applied in fish for artificial modification of chromosome set and allow the production of monosex stocks. Moreover, such manipulations enable rapid production of inbred populations that can be applied in crossbreeding programs. The application of the gynogenesis in sturgeons seems to be very important in creation of all-female stocks for caviar production. The Siberian sturgeon Acipenser baerii is the species most frequently cultured in European fish farms for black caviar. The production and all-female stocks of this species are highly desirable and commercially reasonable. Unfortunately, in Siberian sturgeon, the available sex identification methods are not effective for fish younger than age 3 years because these fish have no morphological sex specific features and no sex chromosomes were identified in this species. Therefore the direct production of all-female stock is very important. Although genome manipulations were successfully applied in the production of monosex populations of some fish species, especially with the XY sex-determination system, in Siberian sturgeon, such manipulations were characterized by low efficiency due to the low hatching rate. The present review provides a summary of genome manipulations in the Siberian sturgeon.

This is a preview of subscription content, log in via an institution.

References

  • Arai K (2001) Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture 197:205–228

    Article  CAS  Google Scholar 

  • Arai K, Ikeno M, Suzuki R (1995) Production of androgenetic diploid loach Misgurnus anguillicaudatus using spermatozoa of natural tetraploids. Aquaculture 137:131–138

    Article  Google Scholar 

  • Babiak I, Dobosz S, Goryczko KH, Brzuzan P, Ciesielski S (2002) Androgenesis in rainbow trout using cryopreserved spermatozoa: the effect of processing and biological factors. Theriogenology 57(4):1229–1249

    Article  CAS  Google Scholar 

  • Bronzi P, Rosenthal H, Gessner J (2011) Global sturgeon aquaculture production: an overview. J Appl Ichthyol 27:169–175

    Article  Google Scholar 

  • Chapman FA, Van Eenennaam JP, Doroshov SI (1996) The reproductive condition of white sturgeon, Acipenser transmontanus, in San Francisco Bay, California. Fish Bull 94:628–634

    Google Scholar 

  • Chebanov M, Galich E (2009) Ultrasound diagnostics for sturgeon broodstock management. Izdatelstvo Prosveshenie-Yug, FSGTSR, Krasnodar

    Google Scholar 

  • Chourrout D, Quillet E (1982) Induced gynogenesis in the rainbow trout: sex and survival of progenies. Production of all-triploid populations. Theor Appl Genet 63:201–205

    Article  CAS  Google Scholar 

  • Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364

    Article  CAS  Google Scholar 

  • Divers SJ, Boone SS, Hoover JJ, Boysen KA, Killgore KJ, Murphy CE, George SG, Camus AC (2009) Field endoscopy for identifying gender, reproductive stage and gonadal anomalies in free-ranging sturgeon (Scaphirhynchus) from the lower Mississippi river. J Appl Ichthyol 25(2):68–74

    Article  Google Scholar 

  • Flynn SR, Matsuoka M, Reith M, Martin-Robichaud DJ, Benfey TJ (2006) Gynogenesis and sex determination in shortnose sturgeon, Acipenser brevirostrum Leisure. Aquaculture 253:721–727

    Article  Google Scholar 

  • Fopp-Bayat D (2007) Verification of meiotic gynogenesis in Siberian sturgeon (Acipenser baeriii) using microsatellite DNA and cytogenetical markers. J Fish Biol 77:478–485

    Article  Google Scholar 

  • Fopp-Bayat D (2010) Meiotic gynogenesis revealed not homogametic female sex determination system in Siberian sturgeon (Acipenser baerii Brandt). Aquaculture 305:174–177

    Article  Google Scholar 

  • Fopp-Bayat D, Woznicki P (2006) Verification of ploidy level in sturgeon larvae. Aquac Res 37:1671–1675

    Article  Google Scholar 

  • Fopp-Bayat D, Jankun M, Woznicki P (2006) Chromosome number and erythrocyte nuclei length in triploid Siberian sturgeon Acipenser baerii Brandt. Caryologia 59:319–321

    Article  Google Scholar 

  • Fopp-Bayat D, Kolman R, Woznicki P (2007) Induction of meiotic gynogenesis in sterlet (Acipenser ruthenus). Aquaculture 264:54–58

    Article  Google Scholar 

  • Grande L, Bemis WE (1991) Osteology and phylogenetic relationships of fossil and recent paddlefishes (Polyodontidae) with comments on the interrelationships of Acipenseriformes. J Vertebr Paleontol 11(1):1–121

    Article  Google Scholar 

  • Grunina AS, Neyfakh AA (1991) Induction of diploid androgenesis in Siberian sturgeon Acipenser baerii Brandt. Ontogenez 1:53–56

    Google Scholar 

  • Grunina AS, Recoubratsky AV (2005) Induced androgenesis in fish: obtaining viable nucleocytoplasmic hybrids. Russ J Dev Biol 36:254–264

    Article  CAS  Google Scholar 

  • Grunina AS, Recoubratsky AV, Emelyanova OV, Neyfakh AA (1995) Induced androgenesis in fish: production of viable androgenetic diploid hybrids. Aquaculture 137:149–149

    Article  Google Scholar 

  • Hurvitz A, Jackson K, Degani G, Levavi-Sivan B (2007) Use of endoscopy for gender and ovarian stage determinations in Russian sturgeon (Acipenser gueldenstaedtii) grown in aquaculture. Aquaculture 270(1–4):158–166

    Article  Google Scholar 

  • Jiménez DA, Peterson DL, Camus AC, Divers SJ (2014) Comparing ultrasonography and endoscopy for early gender identification of juvenile Siberian sturgeon. N Am J Aquac 76(1):14–23

    Article  Google Scholar 

  • Mair GC (1993) Chromosome-set manipulation in tilapia-techniques, problems and prospects. Aquaculture 111:227–244

    Article  Google Scholar 

  • Mims SD, Shelton WL (1998) Induced meiotic gynogenesis in shovelnose sturgeon. Aquac Int 6:323–329

    Article  Google Scholar 

  • Mims SD, Shelton WL, Linhart O, Wang C (1997) Induced meiotic gynogenesis of paddlefish, Polyodon spathula. J World Aquacult Soc 28:334–343

    Article  Google Scholar 

  • Mims S, Lazur A, Shelton W, Gomelsky B, Chapman F (2002) Species profile: production of sturgeon. Southern Regional Aquaculture Center SRAC, publ no. 7200. http://www.aquatic.org/publicat/usda_rac/efs/srac/7200fs.pdf. Accessed 01 Aug 2015

  • Omoto N, Maebayashi M, Adach S, Arai K, Yamauchi K (2005) Sex ratios of triploids and gynogenetic diploids induced in the hybrid sturgeon, the bester (Huso huso female×Acipenser ruthenus male). Aquaculture 245:39–47

    Article  Google Scholar 

  • Pandian TJ, Koteeswaran R (1998) Ploidy induction and sex control in fish. Hydrobiologia 384:167–243

    Article  Google Scholar 

  • Patterson C (1982) Morphology and interrelationships of primitive actinopterygian fishes. Am Zool 22:241–259

    Article  Google Scholar 

  • Recoubratsky AV, Grunina AS, Minin AA, Duma LN, Neyfakh AA (1996) Dispermic Androgenesis in Acipenser stellatus. Sturgeon Q 4:12–14

    Google Scholar 

  • Recoubratsky AV, Grunina AS, Barmintsev VA, Golovanova TS, Chudinov OS, Abramova AB, Panchenko NS, Kupchenko SA (2003) Meiotic gynogenesis in the stellate and Russian sturgeon and sterlet. Russ J Dev Biol 34:92–101

    Article  CAS  Google Scholar 

  • Rochard E, Williot P, Castelnaud G, et Lepage M (1991) Eléments de systématique et de biologie des populations sauvages d’esturgeons. In Williot P (ed): Acipenser, Cemagref Publ.., Antony, France, p 475–507

    Google Scholar 

  • Romashov DD, Nikolyukin NI, Belyaeva VN, Timofeeva NA (1963) Possibilities of producing diploid radiation-induced gynogenesis in sturgeons. Radiobiology 3:145–154

    Google Scholar 

  • Saber MH, Noveiri S, Pourkazemi M, Yazdani M, Ghoroghi A, Bahmani M, Pourdehghani M, Chakmehdouz F, Yarmohammadi M, Nowruzfashkhami M (2014) Induction of meiotic gynogenesis in ship sturgeon using UV-irradiated heterologous sperm. J Appl Genet 55:223–229

    Article  Google Scholar 

  • Scheerer PD, Thorgaard GH, Allendorf FW, Knudsen KL (1986) Androgenetic rainbow trout produced from inbred and outbred sperm sources show similar surviwal. Aquaculture 57:289–298

    Article  Google Scholar 

  • Scheerer PD, Thorgaard GH, Allendorf FW (1991) Genetic analysis of androgenetic rainbow trout. J Exp Zool 260:382–390

    Article  CAS  Google Scholar 

  • Stahl MT, Whitledge GW, Kelly AM (2009) Reproductive biology of middle mississippi river shovelnose sturgeon: insights from seasonal and age variation in plasma sex steroid and calcium concentrations. J Appl Ichthyol 25:75–82

    Article  Google Scholar 

  • Takahashi S, Officer F (2010) Sturgeon conservation and the role of Japan. The State of Wildlife Trade in Japan 10:42–47

    Google Scholar 

  • Thorgaard GH, Scheerer PD, Parsons JE (1985) Residual paternal inheritance in gynogenetic rainbow trout, Salmo gairdneri: implications for gene transfer. Theor Appl Genet 71:119–121

    Article  CAS  Google Scholar 

  • Thorgaard GH, Scheerer PD, Hershberger WK, Myers JM (1990) Androgenetic rainbow trout produced using sperm from tetraploid males show improved survival. Aquaculture 85:215–221

    Article  Google Scholar 

  • Trested DG, Goforth R, Kirk JP, Isely JJ (2010) Survival of shovelnose sturgeon after abdominally invasive endoscopic evaluation. N Am J Fish Manag 30(1):121–125

    Article  Google Scholar 

  • Van Eenennaam AL, Van Eenennaam JP, Medrano JF, Doroshov SI (1996) Rapid verification of meiotic gynogenesis and polyploidy in white sturgeon (Acipenser transmontanus Richardson). Aquaculture 147:177–189

    Article  Google Scholar 

  • Varadaraj K, Pandian TJ (1988) Induction of triploids in Oreochromis mossambicus by thermal, hydrostatic pressure and chemical shocks. In: Proceedings of the aquaculture international congress and exposition. Vancouver, Canada

    Google Scholar 

  • Vecsei P, Litvak MK, Noakes DLG, Rien T, Hochleithner M (2003) A noninvasive technique for determining sex of live adult North American sturgeons. Environ Biol Fish 68:333–338

    Article  Google Scholar 

  • Webb MAH, Feist GW, Foster EP, Schreck CB, Fitzpatrick MS (2002) Potential classification of sex and stage of gonadal maturity of wild white 70 sturgeon using blood plasma indicators. Trans Am Fish Soc 131:132–142

    Article  CAS  Google Scholar 

  • Wei QW, Zou Y, Li P, Li L (2011) Sturgeon aquaculture in China: progress, strategies and prospects assessed on the basis of nation-wide surveys (2007–2009). J Appl Ichthyol 27:162–168

    Article  Google Scholar 

  • Wildhaber ML, Papoulias DM, DeLonay AJ, Tillitt DE, Bryan JL, Annis ML, Allert JA (2005) Gender identification of shovelnose sturgeon using ultrasonic and endoscopic imagery and the application of the method to the pallid sturgeon. J Fish Biol 67(1):114–132

    Article  Google Scholar 

  • Williot P (2011) Sex determination and staging of gonads. In: Williot P, Rochard E, Desse-Berset N, Kirschbaum F, Gessner J (eds) Biology and conservation of the European sturgeon Acipenser sturio L. 1758. Springer, Berlin, pp 369–382

    Chapter  Google Scholar 

  • Williot P, Brun R (1998) Ovarian development and cycles in cultured Siberian sturgeon, Acipenser baerii. Aquat Living Resour 11(2):111–118

    Article  Google Scholar 

  • Williot P, Sabeau L, Gessner J, Arlati G, Bronzi P, Gulyas T, Berni P (2001) Sturgeon farming in Western Europe: recent developments and perspectives. Aquat Living Resour 14:367–374

    Article  Google Scholar 

  • Williot P, Arlati G, Chebanov M, Gulyas T, Kasimov R, Kirschbaum F, Patriche N, Pavlovskaya L, Poliakova L, Pourkazemi M, Kim Y, Zhuang P, Zholdasova IM (2002) Status and management of Eurasian sturgeon: an overview. Int Rev Hydrobiol 87:483–506

    Article  Google Scholar 

  • Woznicki P, Kuzminski H (2002) Chromosome number and erythrocyte nuclei length in triploid brook trout (Salvelinus fontinalis). Caryologia 55(4):295–298

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by NCN project number: 2013/09/B/NZ9/01817.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Fopp-Bayat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Fopp-Bayat, D. (2018). Genome Manipulation and Sex Control in the Siberian Sturgeon: An Updated Synthesis with Regard to Objectives, Constraints and Findings. In: Williot, P., Nonnotte, G., Chebanov, M. (eds) The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 2 - Farming. Springer, Cham. https://doi.org/10.1007/978-3-319-61676-6_15

Download citation

Publish with us

Policies and ethics