Skip to main content

Evolution of Molecular Investigations on Sturgeon Sex Determination and Most Recent Developments in DNA Methylation with a Focus on the Siberian Sturgeon

  • Chapter
  • First Online:
The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 1 - Biology

Abstract

Sturgeon aquaculture is largely based around females due to caviar production. In the absence of sexual dimorphism and differentiated gonads in juveniles, the gender sorting of sturgeon is carried out at about 2–3 years old depending on rearing conditions, which increases farming costs. Identification of a molecular sex determination mechanism or of a molecular sex marker could lead to earlier sex identification. For decades scientists have developed different methods and approaches to identify a way in which sturgeon can be sexed. In this chapter we gather together the different approaches employed: heterogametic sex chromosome identification, random identification of molecular polymorphisms, transcriptome sequencing, and targeting sequences of interest. We have included our own results from juvenile and adult Siberian sturgeon on the inter simple sequence repeat (ISSR) with the support of hierarchical cluster analysis and on the expression of genes known to be involved in sex differentiation, Foxl2, So9, Igf1, and Fgf9. To date, no sex marker has been identified following these methods. We also present the advantages of DNA methylation to assess gene expression regulation, which opens up new perspectives in sex determination and differentiation research in fish. The first investigation of DNA methylation of DMRT1 using MS-HRM technology in sturgeon will conclude this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amberg JJ, Goforth R, Stefanavage T, Sepúlveda MS (2010) Sexually dimorphic gene expression in the gonad and liver of shovelnose sturgeon (Scaphirhynchus platorynchus). Fish Physiol Biochem 36:923–932

    Article  CAS  PubMed  Google Scholar 

  • Amberg JJ, Goforth RR, Sepúlveda MS (2013) Antagonists to the Wnt Cascade Exhibit Sex-Specific Expression in Gonads of Sexually Mature Shovelnose Sturgeon. Sex Dev 7:308–315

    Article  CAS  PubMed  Google Scholar 

  • Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman TL, Hahn MW, Kitano J, Mayrose I, Ming R, Perrin N, Ross L, Valenzuela N, Vamosi JC (2014) The Tree of Sex Consortium. Sex Determination: Why So Many Ways of Doing It? PLoS Biol 12:e1001899. doi:10.1371/journal.pbio.1001899

    Article  PubMed  PubMed Central  Google Scholar 

  • Berbejillo J, Martinez-Bengochea A, Bedó G, Vizziano-Cantonnet D (2011) Molecular Characterization of Testis Differentiation in the Siberian Sturgeon, Acipenser baerii. Indian J Sci Technol 4:71–72

    Google Scholar 

  • Berbejillo J, Martinez-Bengochea A, Bedo G, Brunet F, Volff JN, Vizziano-Cantonnet D (2012) Expression and phylogeny of candidate genes for sex differentiation in a primitive fish species, the Siberian sturgeon, Acipenser baerii. Mol Reprod Dev 79:504–516

    Article  CAS  PubMed  Google Scholar 

  • Berbejillo J, Martinez-Bengochea A, Bedó G, Vizziano-Cantonnet D (2013) Expression of dmrt1 and sox9 during gonadal development in the Siberian sturgeon (Acipenser baerii). Fish Physiol Biochem 39:91–94

    Article  CAS  PubMed  Google Scholar 

  • Brennan J, Capel B (2004) One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 5:509–521

    Article  CAS  PubMed  Google Scholar 

  • Bronzi P, Rosenthal H (2014) Present and future sturgeon and caviar production and marketing: a global market overview. J Appl Ichthyol 30:1536–1546

    Article  Google Scholar 

  • Ceapa C, Williot P, Le Menn F, Davail-Cuisset B (2002) Plasma sex steroids and vitellogenin levels in stellate sturgeon (Acipenser stellatus Pallas) during spawning migration in the Danube River. J Appl Ichthyol 18:391–396

    Article  CAS  Google Scholar 

  • Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    Article  CAS  PubMed  Google Scholar 

  • Chebanov M, Galich E (2009) Ultarsound diagnostics for sturgeon broodstock management. South Branch Federal Center of Selection and Genetics for Aquaculture, Krasnodar, Russian Federation, 116

    Google Scholar 

  • Contractor RG, Foran CM, Li S, Willett KL (2004) Evidence of gender-and tissue-specific promoter methylation and the potential for ethinylestradiol-induced changes in Japanese medaka (Oryzias latipes) estrogen receptor and aromatase genes. J Toxicol Environm Health A 67(1):1–22

    Article  CAS  Google Scholar 

  • Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364

    Article  CAS  Google Scholar 

  • Ezaz MT, Harvey SC, Boonphakdee C, Teale AJ, McAndrew BJ, Penman DJ (2004) Isolation and physical mapping of sex-linked AFLP markers in Nile tilapia (Oreochromis niloticus L.) Mar Biotechnol 6:435–445

    Article  CAS  PubMed  Google Scholar 

  • Felip A, Young WP, Wheeler PA, Thorgaard GH (2005) An AFLP-based approach for the identification of sex-linked markers in rainbow trout (Oncorhynchus mykiss). Aquaculture 247:35–43

    Article  CAS  Google Scholar 

  • Ferreiro C, Medrano JF, Gall GA (1989) Genome analysis of rainbow trout and sturgeon with restriction enzymes and hybridization with a ZFY gene derived probe to identify sex. Aquaculture 81:245–251

    Article  CAS  Google Scholar 

  • Fontana F, Colombo G (1974) The chromosomes of Italian sturgeons. Experientia 30:739–742

    Article  CAS  PubMed  Google Scholar 

  • Fontana F, Rossi R, Lanfredi M, Arlati G, Bronzi P (1997) Cytogenetic characterization of cell lines from three sturgeon species. Caryologia 50(1):91–95

    Article  Google Scholar 

  • Fontana F, Congiu L, Mudrak VA, Quattro JM, Smith TIJ, Ware K, Doroshov SI (2008) Evidence of hexaploid karyotype in shortnose sturgeon. Genome 51:113–119

    Article  CAS  PubMed  Google Scholar 

  • Fopp-Bayat D (2010) Meiotic gynogenesis revealed not homogametic female sex determination system in Siberian sturgeon (Acipenser baeri Brandt). Aquaculture 305:174–177

    Article  Google Scholar 

  • Gaillard S (2006) Détermination et différentiation sexuelles chez les poissons “le sexe des esturgeons.” PhD thesis. University of Toulon

    Google Scholar 

  • Graves JAM (2014) The epigenetic sole of sex and dosage compensation. Nature Genetics 46(3):215–217

    Google Scholar 

  • Griffiths R, Orr KL, Adam A, Barber I (2000) DNA sex identification in the three-spined stickleback. J Fish Biol 57:1331–1334

    Article  CAS  Google Scholar 

  • Hagihara S, Yamashita R, Yamamoto S, Ishihara M, Abe T, Ijiri S, Adachi S (2014) Identification of genes involved in gonadal sex differentiation and the dimorphic expression pattern in undifferentiated gonads of Russian sturgeon Acipenser gueldenstaedtii Brandt & Ratzeburg, 1833. J Appl Ichthyol 30:1557–1564

    Article  CAS  Google Scholar 

  • Hale M, McCormick C, Jackson J, DeWoody JA (2009) Next-generation pyrosequencing of gonad transcriptomes in the polyploid lake sturgeon (Acipenser fulvescens): the relative merits of normalization and rarefaction in gene discovery. BMC Genomics 10:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Hale MC, Jackson JR, DeWoody JA (2010) Discovery and evaluation of candidate sex-determining genes and xenobiotics in the gonads of lake sturgeon (Acipenser fulvescens). Genetica 138:745–756

    Article  CAS  PubMed  Google Scholar 

  • Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, Fernandino JI, Somoza GM, Yokota M, Strüssmann CA (2012) A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci 109:2955–2959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori RS, Strüssmann CA, Fernandino JI, Somoza GM (2013) Genotypic sex determination in teleosts: Insights from the testis-determining amhy gene. Gen Comp Endocrinol 192:55–59

    Article  CAS  PubMed  Google Scholar 

  • Havelka M, Kaspar V, Hulak M, Flajshans M (2011) Sturgeon genetics and cytogenetics: a review related to ploidy levels and interspecific hybridization. Folia Zool 60:93–103

    Article  Google Scholar 

  • Hett AK, Ludwig A (2005) SRY-related (Sox) genes in the genome of European Atlantic sturgeon (Acipenser sturio). Genome 48:181–186

    Article  CAS  PubMed  Google Scholar 

  • Hett AK, Pitra C, Jenneckens I, Ludwig A (2005) Characterization of sox9 in European Atlantic sturgeon (Acipenser sturio). J Hered 96:150–154

    Article  CAS  PubMed  Google Scholar 

  • Howe K, Clark MD, Torroja CF, Torrance J et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K (2012) A Trans-Species Missense SNP in Amhr2 Is Associated with Sex Determination in the Tiger Pufferfish, Takifugu rubripes (Fugu). PLoS Genet 8:e1002798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keyvanshokooh S, Kalbassi MR, Hosseinkhani S, Vaziri B (2009) Comparative proteomics analysis of male and female Persian sturgeon (Acipenser persicus) gonads. Anim Reprod Sci 111:361–368

    Article  CAS  PubMed  Google Scholar 

  • Keyvanshokooh S, Gharaei A (2010) A review of sex determination and searches for sex-specific markers in sturgeon. Aquac Res 41:e1–e7

    Article  Google Scholar 

  • Khodaparast M, Keyvanshokooh S, Pourkazemi M, Hosseini SJ, Zolgharnein H (2014) Searching the genome of beluga (Huso huso) for sex markers based on targeted Bulked Segregant Analysis (BSA). CJES 12:185–195

    Google Scholar 

  • Kobayashi Y, Nagahama Y, Nakamura M (2013) Diversity and plasticity of sex determination and differentiation in fishes. Sex Dev 7:115–125

    Article  CAS  PubMed  Google Scholar 

  • Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3:253–266

    Article  CAS  PubMed  Google Scholar 

  • Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11:191–203

    Article  CAS  PubMed  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Chia JM, Bartfai R, Christoffels A, Yue GH, Ding K, Ho MY, Hill JA, Stupka E, Orban L (2004) Comparative analysis of the testis and ovary transcriptomes in zebrafish by combining experimental and computational tools. Comp Funct Genomics 5:403–418

    Article  PubMed  PubMed Central  Google Scholar 

  • Liew WC, Bartfai R, Lim Z, Sreenivasan R, Siegfried KR, Orban L (2012) Polygenic Sex Determination System in Zebrafish. PLoS One 7(4):e34397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N et al (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417:559–563

    Article  CAS  PubMed  Google Scholar 

  • McCormick CR, Bos DH, DeWoody JA (2008) Multiple molecular approaches yield no evidence for sex-determining genes in lake sturgeon (Acipenser fulvescens). J Appl Ichthyol 24:643–645

    CAS  Google Scholar 

  • Myosho T, Otake H, Masuyama H, Matsuda M, Kuroki Y, Fujiyama A, Naruse K, Hamaguchi S, Sakaizumi M (2012) Tracing the Emergence of a Novel Sex-Determining Gene in Medaka, Oryzias luzonensis. Genetics 191:163–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan Z, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M (2002) A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci 99:11778–11783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Martín L, Viñas J, Ribas L, Díaz N, Gutiérrez A, Di Croce L, Piferrer F (2011) DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet 7:e1002447

    Article  PubMed  PubMed Central  Google Scholar 

  • Penman DJ, Piferrer F (2008) Fish gonadogenesis. Part I: genetic and environmental mechanisms of sex determination. Rev Fish Sci 16:16–34

    Article  CAS  Google Scholar 

  • Pierron F, Bureau du Colombier S, Moffett A, Caron A, Peluhet L, Daffe G, Lambert P, Elie P, Labadie P, Budzinski H, Dufour S, Couture P, Baudrimont M (2014) Abnormal Ovarian DNA Methylation Programming during Gonad Maturation in Wild Contaminated Fish. Environ Sci Technol 48:11688–11695

    Article  CAS  PubMed  Google Scholar 

  • Piferrer F, Guiguen Y (2008) Fish gonadogenesis. Part II: molecular biology and genomics of sex differentiation. Rev Fish Sci 16:35–55

    Article  CAS  Google Scholar 

  • Piferrer F, Ribas L, Díaz N (2012) Genomic approaches to study genetic and environmental influences on fish sex determination and differentiation. Mar Biotechnol 14:591–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rens W, Grützner F, O'Brien PC, Fairclough H, Graves JA, Ferguson-Smith MA (2004) Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proc Natl Acad Sci U S A 101(46):16257–16261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103:1412–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultheis C, Böhne A, Schartl M, Volff JN, Galiana-Arnoux D (2009) Sex determination diversity and sex chromosome evolution in poeciliid fish. Sex Dev 3:68–77

    Article  CAS  PubMed  Google Scholar 

  • Shao C, Li Q, Chen S, Zhang P, Lian J, Hu Q, Sun B, Jin L, Liu S, Wang Z et al (2014) Epigenetic modification and inheritance in sexual reversal of fish. Genome Res 24:604–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si Y, Ding Y, He F, Wen H, Li J, Zhao J, Huang Z (2015) DNA methylation level of cyp19a1a and Foxl2 gene related to their expression patterns and reproduction traits during ovary development stages of Japanese flounder (Paralichthys olivaceus). Gene 575:321–330

    Article  PubMed  Google Scholar 

  • Takehana Y, Matsuda M, Myosho T, Suster ML, Kawakami K, Shin T, Kohara Y et al (2014) Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat Com 5:4157

    CAS  Google Scholar 

  • Vale L, Dieguez R, Sánchez L, Martínez P, Viñas A (2014) A sex-associated sequence identified by RAPD screening in gynogenetic individuals of turbot (Scophthalmus maximus). Mol Biol Rep 41:1501–1509

    Article  CAS  PubMed  Google Scholar 

  • Van Eenennaam V (1997) Genetic Analysis of the Sex Determination Mechanism of White Sturgeon (Acipenser transmontamus Richardson). Chapter 3: Experimental approaches Used in an Attempt to isolate molecular genetic marker for the identification of sexe on white sturgeon—PhD thesis. University of California, Davis

    Google Scholar 

  • Vidotto M, Grapputo A, Boscari E, Barbisan F, Coppe A, Grandi G, Kumar A, Congiu L (2013) Transcriptome sequencing and de novo annotation of the critically endangered Adriatic sturgeon. BMC Genomics 14:407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vizziano-Cantonnet D, Di Landro S, Lasalle A, Martínez A, Mazzoni T, Quagio-Grassiotto I (2016) Identification of the molecular sex-differentiation period in the Siberian sturgeon. Mol Reprod Dev 83:19–36

    Article  CAS  PubMed  Google Scholar 

  • Webb MAH, Doroshov SI (2011) Importance of environmental endocrinology in fisheries management and aquaculture of sturgeons. Gen Compar Endocrinol 170:313–321

    Article  CAS  Google Scholar 

  • Webb M, Van Eenennaam J, Chapman FA, Vasquez D, Hammond G (2013) Techniques to determine sex and stage of maturity in sturgeons and paddlefish: a brief overview. In: workshop of the 7th international symposium on sturgeons, Nanaimo, BC, Canada, 21–25 July 2013

    Google Scholar 

  • Wen AY, You F, Sun P, Li J, Xu DD, Wu ZH, Ma DY, Zhang PJ (2014) CpG methylation of dmrt1 and cyp19a promoters in relation to their sexual dimorphic expression in the Japanese flounder Paralichthys olivaceus. J Fish Biol 84:193–205

    Article  CAS  PubMed  Google Scholar 

  • Wetzel DL, Reynolds JE (2013) Advances in application of LP9 analyses for determination of sex in young sturgeon. In: poster presentation at the 7th international symposium on sturgeons, Nanaimo, BC, Canada, 21–25 July 2013

    Google Scholar 

  • Wetzel DL, Reynolds JE, Roudebush WE (2013) Fish sexual characteristic determination using peptide hormones. Published patent, EP2646833 A2 https://www.google.com/patents/EP2646833A2?cl=en

  • Williot P, Sabeau L (1999) Elevage d’esturgeons et production de caviar: exemple de l’esturgeon sibérien (Acipenser baeri) en France. CR Acad Agric 85(8):71–83

    Google Scholar 

  • Williot P, Sabeau L, Gessner J, Arlati G, Bronzi P, Gulyas T, Berni P (2001) Sturgeon farming in Western Europe: recent developments and perspectives. Aquat Living Ressour 14:367–374

    Article  Google Scholar 

  • Williot P (2002) Reproduction des esturgeons. In: Billard R (ed) Esturgeons et caviar. Tech et Doc, Lavoisier, pp 63–90

    Google Scholar 

  • Wojdacz TK, Dobrovic A, Hansen LL (2008) Methylation-sensitive high-resolution melting. Nat Protoc 3:1903–1908

    Article  CAS  PubMed  Google Scholar 

  • Wuertz S, Gaillard S, Barbisan F, Carle S, Congiu L, Forlani A, Aubert J, Kirschbaum F, Tosi E, Zane L et al (2006) Extensive screening of sturgeon genomes by random screening techniques revealed no sex-specific marker. Aquaculture 258:685–688

    Article  CAS  Google Scholar 

  • Xiao TQ, Lu CY, Li C, Cheng L, Cao DC, Sun XW (2014) An AFLP-based approach for the identification of sex-linked markers in Amur sturgeon Acipenser schrenckii Brandt, 1869. J Appl Ichthyol 30:1282–1285

    Article  CAS  Google Scholar 

  • Yano A, Nicol B, Jouanno E, Quillet E, Fostier A, Guyomard R, Guiguen Y (2012) The sexually dimorphic on the Y-chromosome gene (sdY) is a conserved male-specific Y-chromosome sequence in many salmonids. Evol Appl 6:486–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Yarmohammadi M, Pourkazemi M, Chakmehdouz F, Kazemi R (2011a) Comparative study of male and female gonads in Persian sturgeon (Acipenser persicus) employing DNA-AFLP and CDNA-AFLP analysis. J Appl Ichthyol 27:510–513

    Article  CAS  Google Scholar 

  • Yarmohammadi M, Pourkazemi M, Ghasemi A, Hassanzadeh M, Chakmehdouz F (2011b) AFLP reveals no sex-specific markers in Persian sturgeon (Acipenser persicus) or beluga sturgeon (Huso huso) from the southern Caspian Sea, Iran. Prog Biol Sci 1:55–114

    Google Scholar 

  • Yue H, Li C, Du H, Zhang S, Wei Q (2015) Sequencing and De Novo Assembly of the Gonadal Transcriptome of the Endangered Chinese Sturgeon (Acipenser sinensis). PLoS One 10:e0127332

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang S, Liu Z, Zhang L, Zhang W (2013) Epigenetic Modifications During Sex Change Repress Gonadotropin Stimulation of Cyp19a1a in a Teleost Ricefield Eel (Monopterus albus). Endocrinology 154:2881–2890

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, McBride D, Nandi S, McQueen HA, McGrew MJ, Hocking PM, Lewis PD, Sang HM, Clinton M (2010) Somatic sex identity is cell autonomous in the chicken. Nature 464:237–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Fujimoto T, Adachi S, Yamaha E, Arai K (2011) Genome size variation estimated by flow cytometry in Acipenser mikadoi, Huso dauricus in relation to other species of Acipenseriformes. J Appl Ichthyol 27:484–491

    Article  CAS  Google Scholar 

  • Zhou H, Fujimoto T, Adachi S, Abe S, Yamaha E, Arai K (2013) Molecular cytogenetic study on the ploidy status in Acipenser mikadoi. J Appl Ichthyol 29:51–55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Ecloserie de Guyenne, the Prunier Manufacture Company, and the Sources du Gapeau for generously providing sturgeon and O. Brunel and P. Benoit from the Sturgeon SCEA Company for their help. We also thank the Sturgeon SCEA Company and the region PACA who funded this study; L. Jaffrelot, E. Macarry, R. Ciarlo, and M. Lechable for the help with laboratory analyses; and A. Smith for the English corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémy Simide .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Simide, R., Gaillard, S. (2018). Evolution of Molecular Investigations on Sturgeon Sex Determination and Most Recent Developments in DNA Methylation with a Focus on the Siberian Sturgeon. In: Williot, P., Nonnotte, G., Vizziano-Cantonnet, D., Chebanov, M. (eds) The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 1 - Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-61664-3_5

Download citation

Publish with us

Policies and ethics