Skip to main content

The Bubble Challenge for High-Speed Photography

  • Chapter
  • First Online:

Abstract

Bubbles in liquids show a rich set of phenomena ranging from harmless gaseous bubbles rising in a liquid to almost empty cavitation bubbles responsible for the destruction of ship propellers. A special property of bubbles are the extremely high-speed liquid flows they enable by providing almost empty space for acceleration. Thus bubble dynamics presents a challenge for proper investigation, in particular high-speed liquid jet formation and shock wave radiation. One tool developed to study fast dynamics is high-speed photography with suitable cameras. The gradual approach to resolve bubble dynamics, in particular bubble collapse , via ever too slow cameras up to the state of the art of some hundred million frames per second is reviewed. Some ideas on the numerical extension of camera speed limits are put forward. Moreover, the first historic steps into getting three-dimensional images recorded via high-speed holography with up to some hundred thousand holograms per second are reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H. Kuttruff, Über den Zusammenhang zwischen der Sonolumineszenz und der Schwingungskavitation in Flüssigkeiten (On the connection between sonoluminescence and acoustic cavitation). Acustica 12, 230–254 (1962)

    Google Scholar 

  2. D.F. Gaitan, L.A. Crum, C.C. Church, R.A. Roy, Sonoluminescnece and bubble dynamics for a single, stable cavitation bubble. J. Acoust. Soc. Am. 91, 3166–3183 (1992)

    Article  Google Scholar 

  3. W. Lauterborn, T. Kurz, Coherent Optics, 2nd edn. (Springer, Berlin, 2003), pp. 234–236

    Book  Google Scholar 

  4. W. Lauterborn, Kavitation durch Laserlicht (Laser-induced cavitation). Acustica 31, 51–78 (1974)

    Google Scholar 

  5. C.W. Visser, P.E. Frommhold, S. Wildeman, R. Mettin, D. Lohse, C. Sun, Dynamics of high-speed micro-drop impact: Numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matter 11, 1708–1722 (2015)

    Article  Google Scholar 

  6. J. Noack, A. Vogel, Single-shot spatially resolved characterization of laser-induced shock waves in water. Appl. Opt. 37, 4092–4099 (1998)

    Article  Google Scholar 

  7. W. Güth, Kinematographische Aufnahmen von Wasserdampfblasen (Cinematographic recording of water vapour bubbles). Acustica 4, 445–455 (1954)

    Google Scholar 

  8. W. Lauterborn, H. Bolle, Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72, 391–399 (1975)

    Article  Google Scholar 

  9. Y. Tomita, A. Shima, Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535–564 (1986)

    Article  Google Scholar 

  10. A. Philipp, W. Lauterborn, Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75–116 (1998)

    Article  MATH  Google Scholar 

  11. W. Lauterborn, W. Hentschel, Cavitation bubble dynamics studied by high-speed photography and holography: Part one. Ultrasonics 23, 260–268 (1985)

    Article  Google Scholar 

  12. W. Lauterborn, R. Timm, Bubble collapse studies at a million frames per second, in Cavitation and Inhomogeneities in Underwater Acoustics, ed. by W. Lauterborn (Springer, Berlin, 1980), pp. 42–46

    Google Scholar 

  13. A. Vogel, W. Lauterborn, R. Timm, Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299–338 (1989)

    Article  Google Scholar 

  14. C.-D. Ohl, A. Philipp, W. Lauterborn, Cavitation bubble collapse studied at 20 million frames/s. Ann. Physik. 4, 26–34 (1995)

    Article  Google Scholar 

  15. O. Lindau, W. Lauterborn, Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327–348 (2003)

    Article  MATH  Google Scholar 

  16. R.P. Tong, W.P. Schiffers, S.J. Shaw, J.R. Blake, D.C. Emmony, The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary. J. Fluid Mech. 380, 339–361 (1999)

    Article  MATH  Google Scholar 

  17. M.S. Plesset, R.B. Chapman, Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47, 283–290 (1971)

    Article  Google Scholar 

  18. B. Han, K. Köhler, K. Jungnickel, R. Mettin, W. Lauterborn, A. Vogel, Dynamics of laser-induced bubble pairs. J. Fluid Mech. 771, 706–742 (2015)

    Article  Google Scholar 

  19. M. Koch, C. Lechner, F. Reuter, K. Köhler, R. Mettin, W. Lauterborn, Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM. Comp. Fluids 126, 71–90 (2016)

    Article  MathSciNet  Google Scholar 

  20. J. Appel, P. Koch, R. Mettin, D. Krefting, W. Lauterborn, Stereoscopic high-speed recording of bubble filaments. Ultrason. Sonochem. 11, 39–42 (2004)

    Article  Google Scholar 

  21. W. Lauterborn, K. Hinsch, F. Bader, Holography of bubbles in water as a method to study cavitation bubble dynamics. Acustica 26, 170–171 (1972)

    Google Scholar 

  22. K.J. Ebeling, Hochfrequenzholografie mit dem Rubinlaser (High-speed holography with the ruby laser), Optik 48, 383–397, 481–490 (1977)

    Google Scholar 

  23. W. Lauterborn, K.J. Ebeling, High-speed holography of laser-induced breakdown in liquids. Appl. Phys. Lett. 31, 663–664 (1977)

    Article  Google Scholar 

  24. W. Lauterborn, A. Judt, E. Schmitz, High-speed off-axis holographic cinematography with a copper-vapor-pumped dye laser. Opt. Lett. 18, 4–6 (1993)

    Article  Google Scholar 

  25. W. Hentschel, Hochfrequenzholografie mit dem Argon-Ionen Laser (High-speed holocinematography with the argon ion laser). Optik 68, 283–310 (1984)

    Google Scholar 

  26. M. Novaro, Camera holographique ultra-rapide (Ultra high-speed holographic camera), C. R. Acad. Sci. Paris, B. 273, 941–943 (1971)

    Google Scholar 

  27. W. Hentschel, W. Lauterborn, New speed record in long series holographic cinematography. Appl. Opt. 23, 3263–3265 (1984)

    Article  Google Scholar 

  28. W. Hentschel, W. Lauterborn, High speed holographic movie camera. Opt. Eng. 24, 687–691 (1985)

    Article  Google Scholar 

  29. W. Lauterborn, E. Cramer, Subharmonic route to chaos observed in acoustics. Phys. Rev. Lett. 47, 1445–1448 (1981)

    Article  Google Scholar 

  30. W. Lauterborn, A. Koch, Holographic observation of period-doubled and chaotic bubble oscillations in acoustic cavitation. Phys. Rev. A. 35, 1974–1976 (1987)

    Article  Google Scholar 

  31. W. Lauterborn, J. Holzfuss, Acoustic chaos. Int. J. Bif. Chaos 1, 13–26 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. W. Lauterborn, W. Hentschel, Cavitation bubble dynamics studied by high-speed photography and holography: Part two. Ultrasonics 24, 59–65 (1986)

    Article  Google Scholar 

  33. W. Lauterborn and W. Hentschel, Holografische Hochgeschwindigkeitskinematografie (Holographic high-speed cinematography), in Praxis der Holografie (Practical holography), ed. by H. Marwitz et al. (Expert Verlag, Ehningen, 1989), pp. 354–370, 474–475

    Google Scholar 

  34. W. Lauterborn, T. Kurz, R. Mettin, C.D. Ohl, Experimental and theoretical bubble dynamics. Adv. Chem. Phys. 110, 295–380 (1999)

    Google Scholar 

  35. W. Lauterborn and T. Kurz, Physics of bubble oscillations, Rep. Prog. Phys. 106501 (88 pp) (2010)

    Google Scholar 

  36. W. Lauterborn, Optische Kavitation (Optic cavitation). Physikalische Blätter 32, 553–563 (1976)

    Article  Google Scholar 

  37. W. Lauterborn, Cavitation and coherent optics, in Cavitation and Inhomogeneities in Underwater Acoustics, ed. by W. Lauterborn (Springer, Berlin, 1980), pp. 3–12

    Google Scholar 

  38. W. Hentschel, W. Lauterborn, Holographic generation of multi-bubble systems, in Cavitation and Inhomogeneities in Underwater Acoustics, ed. by W. Lauterborn (Springer, Berlin, 1980), pp. 47–53

    Google Scholar 

  39. K.Y. Lim, P.A. Quinto-Su, E. Klaseboer, B.C. Khoo, V. Venugopalan, C.-D. Ohl, Nonspherical laser-induced cavitation bubbles, Phys. Rev. E. 81, 016308 (9 pp) (2010)

    Google Scholar 

  40. U. Schnars, W. Jüptner, Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33, 179–181 (1994)

    Article  Google Scholar 

  41. J. Sheng, E. Malkiel, J. Katz, Digital holographic microscope for measuring three-dimensional particle distributions and motions. Appl. Opt. 45, 3893–3901 (2006)

    Article  Google Scholar 

  42. G. Haussmann, W. Lauterborn, Determination of size and position of fast moving gas bubbles in liquids by digital 3-D image processing of hologram reconstructions. Appl. Opt. 19, 3529–3535 (1980)

    Article  Google Scholar 

  43. E. Malkiel, J.A. Abras, J. Katz, Automated scanning and measurement of particle distributions within a holographic reconstructed volume. Meas. Sci. Technol. 15, 601–612 (2004)

    Article  Google Scholar 

  44. U. Schnars, W. Jüptner, Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13, R85–R101 (2002)

    Article  Google Scholar 

  45. J. Katz, J. Sheng, Applications of holography in fluid mechanics and particle dynamics. Annu. Rev. Fluid Mech. 42, 531–555 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Lauterborn .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

421713_1_En_2_MOESM1_ESM.avi

Stereoscopic view of bubble motion in an ultrasonic field. Viewing angle between the two cameras = 35.4°, ultrasonic frequency = 22.8 kHz, pressure amplitude = 132 kPa, frame size: 1 cm × 1 cm per camera, frame rate: 2250 fps, exposure time: 440 μs (AVI 2302 kb)

421713_1_En_2_MOESM2_ESM.avi

Tracking of individual bubbles in Video 2.1. Different bubbles are marked by different colors. The data serve for determining their 3D positions. The data also serve for determining velocities of the bubbles (AVI 3563 kb)

A 3D plot of the bubble positions from Video 2.1 according to the identification in Video 2.2 and their pathways. The rotation is for better perception of the overall 3D bubble arrangement. It is inhomogeneous and forms a network of branches (called streamers) (AVI 1003 kb)

421713_1_En_2_MOESM1_ESM.avi

Stereoscopic view of bubble motion in an ultrasonic field. Viewing angle between the two cameras = 35.4°, ultrasonic frequency = 22.8 kHz, pressure amplitude = 132 kPa, frame size: 1 cm × 1 cm per camera, frame rate: 2250 fps, exposure time: 440 μs (AVI 2302 kb)

421713_1_En_2_MOESM2_ESM.avi

Tracking of individual bubbles in Video 2.1. Different bubbles are marked by different colors. The data serve for determining their 3D positions. The data also serve for determining velocities of the bubbles (AVI 3563 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Lauterborn, W., Kurz, T. (2018). The Bubble Challenge for High-Speed Photography. In: Tsuji, K. (eds) The Micro-World Observed by Ultra High-Speed Cameras. Springer, Cham. https://doi.org/10.1007/978-3-319-61491-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61491-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61490-8

  • Online ISBN: 978-3-319-61491-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics