Skip to main content

Analysis of the Viral Lytic Polysaccharide Monooxygenase Fusolin and Its Potential Application to Pest Control

  • Chapter
  • First Online:

Abstract

Although microbial insecticides are generally safe for vertebrates, plants and the environment, their use has been very limited, mainly because their cost of pest control is much higher than that of chemical insecticides. To expand the use of microbial insecticides, their ability to kill pests needs to be strengthened. Increased activity will reduce the amount applied per unit area and the cost of pest control. The protein fusolin that is produced by the insect viruses entomopoxviruses and baculoviruses strongly synergistically increases the infectivity of insect viruses. Recent studies further elucidated the synergistic effect of the protein on the insecticidal activity of major entomopathogenic bacterium Bacillus thuringiensis. Furthermore studies have revealed that fusolin is a lytic chitin monooxygenase, and thus the mechanism of increase in the infectivity and insecticidal activity by fusolin has been elucidated in detail. These advances have expanded the possible practical applications of this protein to pest control and suggest its potential for use in a new field, namely, the development of technologies for efficient biofuel production from biomass such as chitin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aachmann FL, Sørlie M, Skjå-Bræk G, Eijsink VGH, Vaaje-Kolstad G (2012) NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proc Natl Acad Sci U S A 109:18779–18784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams JR, Wilcox TA (1968) Histopathology of the almond moth, Cadra cautella, infected with a nuclear-polyhedrosis virus. J Invertebr Pathol 12:269–274

    Article  CAS  PubMed  Google Scholar 

  • Afonso CL, Tulman ER, Lu Z, Oma E, Kutish GF, Rock DL (1999) The genome of Melanoplus sanguinipes entomopoxvirus. J Virol 73:533–552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bawden AL, Glassberg KJ, Diggans J, Shaw R, Farmerie W, Moyer RW (2000) Complete genomic sequence of the Amsacta moorei entomopoxvirus: analysis and comparison with other poxviruses. Virology 274:120–139

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty M, Narayanan K, Sivaprakash MK (2004) In vivo enhancement of nucleopolyhedrovirus of oriental armyworm, Mythimna separata using spindles from Helicoverpa armigera entomopoxvirus. Indian J Exp Biol 42:121–123

    CAS  PubMed  Google Scholar 

  • Chakraborty M, Narayanan K, Suryanarayana VVS, Sivaprakash MK (2005) Enhancement of nucleopolyhedrovirus of oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae) using diamond shaped inclusion bodies of Galleria mellonella NPV (Lepidoptera: Pyralidae). Entomon 30:343–346

    Google Scholar 

  • Chiu E, Coulibaly F, Metcalf P (2012) Insect virus polyhedra, infectious protein crystals that contain virus particles. Curr Opin Struct Biol 22:234–240

    Article  CAS  PubMed  Google Scholar 

  • Chiu E, Hijnen M, Bunker R, Boudes M, Rajendran C, Aizel K, Olieric V, Schulze-Briese C, Mitsuhashi W, Young V, Ward VK, Bergoin M, Metcalf P, Coulibaly F (2015) Structural basis for the enhancement of virulence by viral spindles and their in vivo crystallization. Proc Natl Acad Sci U S A 112:3973–3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derksen ACG, Granados RR (1988) Alteration of a lepidopteran peritrophic membrane by baculoviruses and enhancement of viral infectivity. Virology 167:242–250

    Article  CAS  PubMed  Google Scholar 

  • Din N, Gilkes NR, Tekant B, Miller RC, Warren AJ, Kilburn DG (1991) Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulose. Nat Biotechnol 9:1096–1099

    Article  CAS  Google Scholar 

  • Din N, Damude HG, Gilkes NR, Miller RC Jr, Warren RAJ, Kilburn DG (1994) C1-Cx revisited: intramolecular synergism in a cellulase. Proc Natl Acad Sci U S A 91:11383–11387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frederiksen RF, Paspaliari DK, Larsen T, Storgaard BG, Larsen MH, Ingmer H, Palcic MM, Leisner JJ (2013) Bacterial chitinases and chitin-binding proteins as virulence factors. Microbiology 159:833–847

    Article  CAS  PubMed  Google Scholar 

  • Furuta Y, Mitsuhashi W, Kobayashi J, Hayasaka S, Imanishi S, Chinzei Y, Sato M (2001) Peroral infectivity of non-occluded viruses of Bombyx mori nucleopolyhedrovirus and polyhedrin-negative recombinant baculoviruses to silkworm larvae is drastically enhanced when administered with Anomala cuprea entomopoxvirus spindles. J Gen Virol 82:307–312

    Article  CAS  PubMed  Google Scholar 

  • Gelfand I, Sahajpal R, Zhang X, Izaurralde RC, Gross KL, Robertson GP (2013) Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493:514–517

    Article  CAS  PubMed  Google Scholar 

  • Goto C (1990) Enhancement of a nuclear polyhedrosis virus (NPV) infection by a granulosis virus (GV) isolated from the spotted cutworm, Xestia c-nigrum L. (Lepidoptera: Noctuidae). Appl Entomol Zool 25:135–137

    Article  Google Scholar 

  • Gross CH, Wolgamot GM, Russell RLQ, Pearson MN, Rohmann GF (1993) A 37-kilodalton glycoprotein from a baculovirus of Orgyia pseudotsugata is localized to cytoplasmic inclusion bodies. J Virol 67:469–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayakawa T, Shitomi Y, Miyamoto K, Hori H (2004) GalNAc pretreatment inhibits trapping of Bacillus thuringiensis Cry1Ac on the peritrophic membrane of Bombyx mori. FEBS Lett 576:331–335

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa T, Xu J, Hukuhara T (1996) Cloning and sequencing of the gene for an enhancing factor from Pseudaletia separata entomopoxvirus. Gene 177:269–270

    Article  CAS  PubMed  Google Scholar 

  • Huger AM, Krieg A (1968) On spindle-shaped cytoplasmic inclusions associated with a nuclear polyhedrosis of Choristoneura murinana. J Invertebr Pathol 12:461–462

    Article  Google Scholar 

  • Hukuhara T, Tamura K, Zhu Y, Abe H, Tanada Y (1987) Synergistic factor shows specificity in enhancing nuclear polyhedrosis virus infections. Appl Entomol Zool 22:235–236

    Article  Google Scholar 

  • Lai-Fook J, Dall DJ (2000) Spindle bodies of Heliothis armigera entomopoxvirus develop in structures associated with host cell endoplasmic reticulum. J Invertebr Pathol 75:183–192

    Article  CAS  PubMed  Google Scholar 

  • Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissart B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Barrett J, Pang A, Klose RJ, Krell PJ, Arif BM (2000) Characterization of an overexpressed spindle protein during a baculovirus infection. Virology 268:56–67

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Li C, Yang K, Wang L, Yin C, Gong Y, Pang Y (2003) Characterization of a chitin-binding protein GP37 of Spodoptera litura multicapsid nucleopolyhedrovirus. Virus Res 96:113–122

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ma X, Lei C, Xiao Y, Zhang Z, Sun X (2011) Synergistic effects of Cydia pomonella granulovirus GP37 on the infectivity of nucleopolyhedroviruses and lethality of Bacillus thuringiensis. Arch Virol 156:1707–1715

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi W (2002) Further evidence that spindles of an entomopoxvirus enhance its infectivity in a host insect. J Invertebr Pathol 79:59–61

    Article  PubMed  Google Scholar 

  • Mitsuhashi W (2009) Insect virus proteins involved in the peroral infectivity of the viruses and their potential practical application in pest control. In: Insect viruses: detection, characterization and roles. Nova Science Publishers, New York, pp 1–20

    Google Scholar 

  • Mitsuhashi W (2013) Trends in studies on insect viral proteins involved in peroral infectivity of insect viruses. Sanshi-Konchu Biotechnol 82:99–108. (in Japanese)

    Google Scholar 

  • Mitsuhashi W, Asano S, Miyamoto K, Wada S (2014a) Further research on the biological function of inclusion bodies of Anomala cuprea entomopoxvirus, with special reference to effect on the insecticidal activity of a Bacillus thuringiensis formulation. Pest Manag Sci 70:46–54

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi W, Miyamoto K, Wada S (2014b) The complete genome sequence of the Alphaentomopoxvirus Anomala cuprea entomopoxvirus, including its terminal hairpin loop sequences, suggests a potentially unique mode of apoptosis inhibition and mode of DNA replication. Virology 452–453:95–116

    Article  PubMed  Google Scholar 

  • Mitsuhashi W, Furuta Y, Sato M (1998) The spindles of an entomopoxvirus of Coleoptera (Anomala cuprea) strongly enhance the infectivity of a nucleopolyhedrovirus in Lepidoptera (Bombyx mori). J Invertebr Pathol 71:186–188

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi W, Kawakita H, Murakami R, Takemoto Y, Saiki T, Miyamoto K, Wada S (2007) Spindles of an entomopoxvirus facilitate its infection of the host insect by disrupting the peritrophic membrane. J Virol 81:4235–4243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuhashi W, Miyamoto K (2003) Disintegration of the peritrophic membrane of silkworm larvae due to spindles of an entomopoxvirus. J Invertebr Pathol 82:34–40

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi W, Murakami R, Takemoto Y, Miyamoto K, Wada S (2008) Stability of the viral-enhancing ability of entomopoxvirus spindles exposed to various abiotic factors. Appl Entomol Zool 43:483–489

    Article  Google Scholar 

  • Mitsuhashi W, Sato M (2000) Enhanced infection of a nucleopolyhedrovirus in a lepidopteran pest (Spilosoma imparilis) by spindles of a coleopteran entomopoxvirus (EPV) (Anomala cuprea EPV). J For Res 5:285–287

    Article  Google Scholar 

  • Mitsuhashi W, Sato M, Hirai Y (2000) Involvement of spindles of an entomopoxvirus (EPV) in infectivity of the EPVs to their host insect. Arch Virol 145:1465–1471

    Article  CAS  PubMed  Google Scholar 

  • Olszewski JA, Dall DJ (2002) Assessment of foreign protein production by recombinant Heliothis (Helicoverpa) armigera entomopoxviruses in Spodoptera frugiperda cells. J Gen Virol 83:451–461

    Article  CAS  PubMed  Google Scholar 

  • Phanis CG, Miller DP, Cassar SC, Tristem M, Thiem SM, O’Reilly DR (1999) Identification and expression of two baculovirus gp37 genes. J Gen Virol 80:1823–1831

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Zhong J, Granados RR (1999) A baculovirus enhancin alters the permeability of a mucosal midgut peritrophic matrix from lepidopteran larvae. J Insect Physiol 45:159–166

    Article  CAS  PubMed  Google Scholar 

  • Salvador R, Ferrelli ML, Berretta MF, Mitsuhashi W, Biedma ME, Romanowski V, Sciocco-Cap A (2012) Analysis of EpapGV gp37 gene reveals a close relationship between granulovirus and entomopoxvirus. Virus Genes 45:610–613

    Article  CAS  PubMed  Google Scholar 

  • Takemoto Y, Mitsuhashi W, Murakami R, Konishi H, Miyamoto K (2008) The N-terminal region of an entomopoxvirus fusolin is essential for the enhancement of peroral infection, whereas the C-terminal region is eliminated in digestive juice. J Virol 82:12406–12415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanada Y (1959) Synergism between two viruses of the armyworm, Pseudaletia unipuncta (Haworth) (Lepidoptera, Noctuidae). J Invertebr Pathol 1:215–231

    Google Scholar 

  • Thézé J, Takatsuka J, Nakai M, Arif B, Herniou EA (2015) Gene acquisition convergence between entomopoxviruses and baculoviruses. Viruses 7:1960–1974

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, Eijsink VGH (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222

    Article  CAS  PubMed  Google Scholar 

  • Vialard JE, Yuen L, Richardson CD (1990) Identification and characterization of a baculovirus occlusion body glycoprotein which resembles spheroidin, an entomopoxvirus protein. J Virol 64:5804–5811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Granados RR (1997) An intestinal mucin is the target substrate for a baculovirus enhancin. Proc Natl Acad Sci U S A 94:6977–6982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Granados RR (2000) Calcofluor disrupts the midgut defense system in insects. Insect Biochem Mol Biol 30:135–143

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Granados RR (2001) Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. Arch Insect Biochem Physiol 47:110–118

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Hammer DA, Granados RR (1994) Interaction of Trichoplusia ni granulosis virus-encoded enhancin with the midgut epithelium and peritrophic membrane of four lepidopteran insects. J Gen Virol 75:1961–1967

    Article  CAS  PubMed  Google Scholar 

  • Wijonarko A, Hukuhara T (1998) Detection of a virus enhancing factor in the spheroid, spindle, and virion of an entomopoxvirus. J Invertebr Pathol 72:82–86

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Hukuhara T (1992) Enhanced infection of a nuclear polyhedrosis virus in larvae of the armyworm, Pseudaletia separata, by a factor in the spheroids of an entomopoxvirus. J Invertebr Pathol 60:259–264

    Article  Google Scholar 

  • Yaman M, Acar KF, Radek R (2015) A nucleopolyhedrovirus from the Mediterranean flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae). Appl Entomol Zool 50:355–359

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Mitsuhashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitsuhashi, W. (2018). Analysis of the Viral Lytic Polysaccharide Monooxygenase Fusolin and Its Potential Application to Pest Control. In: Kumar, D., Gong, C. (eds) Trends in Insect Molecular Biology and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-61343-7_7

Download citation

Publish with us

Policies and ethics