Skip to main content

Optical Techniques: Investigations in Oral Cancers

  • Chapter
  • First Online:
Oral Cancer Detection

Abstract

The routine oral cancer screening involves a clinical oral examination followed by biopsy. The biopsied sample is subjected to histopathology, the gold standard. As this procedure is prone to subjective errors, requires experienced pathologists and is time consuming, it is pertinent to explore newer diagnostic adjuncts/methods. The changes in the biochemical properties of an organ/tissue are also known to be reflected in the optical properties which can be conveniently exploited through optical techniques. Optical techniques are shown to be rapid, objective, and noninvasive and are sensitive to tissue biochemistry. Since biochemical changes often precede visible morphological alterations, these techniques can serve as potential screening/diagnostic tools. This chapter highlights the advancements of optical/spectroscopic techniques, such as fluorescence spectroscopy, elastic scattering spectroscopy, diffuse reflectance spectroscopy, optical coherence tomography, Fourier-transform infrared spectroscopy, and Raman spectroscopy, in the field of oral cancer diagnostics/screening. The chapter begins with discussion on scope of optical techniques and basic principles of these techniques, followed by a brief discussion of multivariate statistical tools which play a major role in data analysis. The last section provides an overview on explorations of optical techniques in oral cancer screening/diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mehrotra R, Gupta DK. Exciting new advances in oral cancer diagnosis: avenues to early detection. Head Neck Oncol. 2011;3:33.

    Google Scholar 

  2. Sankaranarayanan R, Ramadas K, Thomas G, Muwonge R, Thara S, Mathew B, Rajan B, Trivandrum oral cancer screening study G. Effect of screening on oral cancer mortality in Kerala, India: a cluster-randomised controlled trial. Lancet. 2005;365:1927–33.

    Google Scholar 

  3. Lingen MW, Kalmar JR, Karrison T, Speight PM. Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncol. 2008;44:10–22.

    Article  Google Scholar 

  4. Fedele S. Diagnostic aids in the screening of oral cancer. Head Neck Oncol. 2009;1:5.

    Article  Google Scholar 

  5. Masters BR. The development of fluorescence microscopy. In: eLS. Chichester: Wiley; 2010.

    Google Scholar 

  6. Stokes GG. On the change of refrangibility of light. In: Philosophical transactions of the royal society of London; 1852. p. 463–562.

    Google Scholar 

  7. Wagnieres GA, Star WM, Wilson BC. In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol. 1998;68:603–32.

    Article  Google Scholar 

  8. Pottier R. In vitro and in vivo fluorescence monitoring of photosensitizers. J Photochem Photobiol B. 1990;6:103–9.

    Article  Google Scholar 

  9. Nilsson H, Johansson J, Svanberg K, Svanberg S, Jori G, Reddi E, et al. Laser-induced fluorescence in malignant and normal tissue in mice injected with two different carotenoporphyrins. Br J Cancer. 1994;70:873.

    Google Scholar 

  10. Ramanujam N. Fluorescence spectroscopy in vivo. In: Encyclopedia of analytical chemistry. Chichester: Wiley; 2000.

    Google Scholar 

  11. Neves V, Heister E, Costa S, Tilmaciu C, Flahaut E, Soula B, et al. Design of double-walled carbon nanotubes for biomedical applications. Nanotechnology. 2012;23:365102.

    Google Scholar 

  12. De Veld D, Witjes M, Sterenborg H, Roodenburg J. The status of in vivo autofluorescence spectroscopy and imaging for oral oncology. Oral Oncol. 2005;41:117–31.

    Article  Google Scholar 

  13. Inaguma M, Hashimoto K. Porphyrin-like fluorescence in oral cancer: in vivo fluorescence spectral characterization of lesions by use of a near-ultraviolet excited autofluorescence diagnosis system and separation of fluorescent extracts by capillary electrophoresis. Cancer. 1999;86:2201–11.

    Article  Google Scholar 

  14. Patton L, Epstein J, Kerr A. Adjunctive techniques for oral cancer examination and lesion diagnosis: a systematic review of the literature. J Am Dent Assoc. 2008;139:896–905.

    Article  Google Scholar 

  15. Kois JC, Truelove E. Detecting oral cancer: a new technique and case reports. Dent Today. 2006;25:94, 96-97.

    PubMed  Google Scholar 

  16. Laronde DM, Williams PM, Hislop TG, Poh C, Ng S, Bajdik C, Zhang L, MacAulay C, Rosin MP. Influence of fluorescence on screening decisions for oral mucosal lesions in community dental practices. J Oral Pathol Med. 2014;43:7–13.

    Article  Google Scholar 

  17. A’Amar O, Liou L, Rodriguez-Diaz E, De las Morenas A, Bigio I. Comparison of elastic scattering spectroscopy with histology in ex vivo prostate glands: potential application for optically guided biopsy and directed treatment. Lasers Med Sci. 2013;28:1323–9.

    Article  Google Scholar 

  18. Kubelka P. New contributions to the optics of intensely light-scattering materials. Part II: nonhomogeneous layers*. J Opt Soc Am. 1954;44:330–5.

    Article  Google Scholar 

  19. Huang P-Y, Chien C-Y, Sheu C-R, Chen Y-W, Tseng S-H. Light distribution modulated diffuse reflectance spectroscopy. Biomed Opt Express. 2016;7:2118–29.

    Google Scholar 

  20. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81.

    Google Scholar 

  21. Drexler W, Morgner U, Ghanta RK, Kärtner FX, Schuman JS, Fujimoto JG. Ultrahigh-resolution ophthalmic optical coherence tomography. Nature Med. 2001;7:502–7.

    Article  Google Scholar 

  22. An L, Wang RK. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Opt Express. 2008;16:11438–52.

    Article  Google Scholar 

  23. Boppart SA, Luo W, Marks DL, Singletary KW. Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer. Breast Cancer Res Treat. 2004;84:85–97.

    Google Scholar 

  24. Vakoc BJ, Fukumura D, Jain RK, Bouma BE. Cancer imaging by optical coherence tomography: preclinical progress and clinical potential. Nat Rev Cancer. 2012;12:363–8.

    Google Scholar 

  25. Wessels R, De Bruin D, Faber D, Van Leeuwen T, Van Beurden M, Ruers T. Optical biopsy of epithelial cancers by optical coherence tomography (OCT). Lasers Med Sci. 2014;29:1297–305.

    Google Scholar 

  26. Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv. 2009;2:1035–46.

    Google Scholar 

  27. Larina IV, Ivers S, Syed S, Dickinson ME, Larin KV. Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT. Opt Lett. 2009;34:986–8.

    Article  Google Scholar 

  28. Böhringer H, Boller D, Leppert J, Knopp U, Lankenau E, Reusche E, et al. Time-domain and spectral-domain optical coherence tomography in the analysis of brain tumor tissue. Lasers Surg Med. 2006;38:588–97.

    Google Scholar 

  29. Assayag O, Grieve K, Devaux B, Harms F, Pallud J, Chretien F, et al. Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography. Neuro Image Clin. 2013;2:549–57.

    Google Scholar 

  30. Kut C, Chaichana KL, Xi J, Raza SM, Ye X, McVeigh ER, et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Sci Transl Med. 2015;7:292ra100.

    Google Scholar 

  31. Raman CV, Krishnan KS. A new type of secondary radiation. Nature. 1928;121:501–2.

    Article  Google Scholar 

  32. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS. Surface-enhanced Raman scattering and biophysics. J Phys Condens Matter. 2002;14:R597.

    Article  Google Scholar 

  33. Xie W, Schlücker S. Medical applications of surface-enhanced Raman scattering. Phys Chem Chem Phys. 2013;15:5329–44.

    Article  Google Scholar 

  34. Tolles WM, Nibler J, McDonald J, Harvey A. A review of the theory and application of coherent anti-stokes Raman spectroscopy (CARS). Appl Spectrosc. 1977;31:253–71.

    Article  Google Scholar 

  35. Kudelski A. Analytical applications of Raman spectroscopy. Talanta. 2008;76:1–8.

    Article  Google Scholar 

  36. White JC. Stimulated raman scattering. In: Tunable lasers. Berlin: Springer; 1987. p. 115–207.

    Google Scholar 

  37. Yakovlev VV, Petrov GI, Zhang HF, Noojin GD, Denton ML, Thomas RJ, et al. Stimulated Raman scattering: old physics, new applications. J Mod Opt. 2009;56:1970–3.

    Google Scholar 

  38. Eesley GL. Coherent raman spectroscopy. New York: Elsevier; 2013.

    Google Scholar 

  39. Dingari NC, Horowitz GL, Kang JW, Dasari RR, Barman I. Raman spectroscopy provides a powerful diagnostic tool for accurate determination of albumin glycation. PLoS One. 2012;7:e32406.

    Article  Google Scholar 

  40. Barman I, Dingari NC, Kang JW, Horowitz GL, Dasari RR, Feld MS. Raman spectroscopy-based sensitive and specific detection of glycated hemoglobin. Anal Chem. 2012;84:2474–82.

    Article  Google Scholar 

  41. Filik J, Stone N. Drop coating deposition Raman spectroscopy of protein mixtures. Analyst. 2007;132:544–50.

    Article  Google Scholar 

  42. Matousek P, Clark I, Draper E, Morris M, Goodship A, Everall N, et al. Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl Spectrosc. 2005;59:393–400.

    Google Scholar 

  43. Stone N, Kerssens M, Lloyd GR, Faulds K, Graham D, Matousek P. Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging–the next dimension. Chem Sci. 2011;2:776–80.

    Article  Google Scholar 

  44. Sharma B, Ma K, Glucksberg MR, Van Duyne RP. Seeing through bone with surface-enhanced spatially offset Raman spectroscopy. J Am Chem Soc. 2013;135:17290–3.

    Article  Google Scholar 

  45. Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev Comput Stat. 2010;2:433–59.

    Article  Google Scholar 

  46. Varmuza K, Filzmoser P. Introduction to multivariate statistical analysis in chemometrics. Boca Raton: CRC press; 2009.

    Book  Google Scholar 

  47. Bakker Schut TC, Witjes MJ, Sterenborg HJ, Speelman OC, Roodenburg JL, Marple ET, et al. In vivo detection of dysplastic tissue by Raman spectroscopy. Anal Chem. 2000;72:6010–8.

    Google Scholar 

  48. Gimenez-Conti IB, Slaga TJ. The hamster cheek pouch carcinogenesis model. J Cell Biochem. 1993;53:83–90.

    Article  Google Scholar 

  49. Salley JJ. Experimental carcinogenesis in the cheek pouch of the Syrian hamster. J Dent Res. 1954;33:253–62.

    Article  Google Scholar 

  50. Keyes PH, Dale PP. A preliminary survey of the pouches and dentition of the Syrian hamster. J Dent Res. 1944;23:427–38.

    Article  Google Scholar 

  51. Shklar G. Experimental oral pathology in the Syrian hamster. Prog Exp Tumor Res. 1972;16:518–38.

    Article  Google Scholar 

  52. Balasenthil S, Saroja M, Ramachandran C, Nagini S. Of humans and hamsters: comparative analysis of lipid peroxidation, glutathione, and glutathione-dependent enzymes during oral carcinogenesis. Br J Oral Maxillofac Surg. 2000;38:267–70.

    Article  Google Scholar 

  53. Nagini S, Letchoumy PV, Thangavelu A, Ramachandran C. Of humans and hamsters: a comparative evaluation of carcinogen activation, DNA damage, cell proliferation, apoptosis, invasion, and angiogenesis in oral cancer patients and hamster buccal pouch carcinomas. Oral Oncol. 2009;45:e31–7.

    Article  Google Scholar 

  54. Ambatipudi S, Bhosale PG, Heath E, Pandey M, Kumar G, Kane S, et al. Downregulation of keratin 76 expression during oral carcinogenesis of human, hamster and mouse. PLoS One. 2013;8:e70688.

    Google Scholar 

  55. Suda D, Schwartz J, Shklar G. GGT reduction in beta carotene-inhibition of hamster buccal pouch carcinogenesis. Eur J Cancer Clin Oncol. 1987;23:43–6.

    Article  Google Scholar 

  56. Solt DB. Localization of gamma-glutamyl transpeptidase in hamster buccal pouch epithelium treated with 7, 12-dimethylbenz [a] anthracene. J Nat Cancer Inst. 1981;67:193–200.

    PubMed  Google Scholar 

  57. Gimenez-Conti IB, Bianchi AB, Stockman SL, Conti CJ, Slaga TJ. Activating mutation of the ha-ras gene in chemically induced tumors of the hamster cheek pouch. Mol Carcinog. 1992;5:259–63.

    Article  Google Scholar 

  58. Gimenez-Conti IB, LaBate M, Liu F, Osterndorff E. p53 alterations in chemically induced hamster cheek-pouch lesions. Mol Carcinog. 1996;16:197–202.

    Article  Google Scholar 

  59. Husain Z, Fei Y, Roy S, Solt DB, Polverini PJ, Biswas DK. Sequential expression and cooperative interaction of c-ha-ras and c-erbB genes in in vivo chemical carcinogenesis. Proc Nat Acad Sci. 1989;86:1264–8.

    Article  Google Scholar 

  60. Chen CT, Chiang HK, Chow SN, Wang CY, Lee YS, Tsai JC, et al. Autofluorescence in normal and malignant human oral tissues and in DMBA-induced hamster buccal pouch carcinogenesis. J Oral Pathol Med. 1998;27:470–4.

    Google Scholar 

  61. Wang CY, Tsai T, Chen HC, Chang SC, Chen CT, Chiang CP. Autofluorescence spectroscopy for in vivo diagnosis of DMBA-induced hamster buccal pouch pre-cancers and cancers. J Oral Pathol Med. 2003;32:18–24.

    Article  Google Scholar 

  62. Wang C-Y, Chen C-T, Chiang C-P, Young S-T, Chow S-N, Chiang HK. Partial least-squares discriminant analysis on autofluorescence spectra of oral carcinogenesis. Appl Spectrosc. 1998;52:1190–6.

    Article  Google Scholar 

  63. Sun Y, Phipps J, Elson DS, Stoy H, Tinling S, Meier J, et al. Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma. Opt Lett. 2009;34:2081–3.

    Google Scholar 

  64. Cheng S, Cuenca RM, Liu B, Malik BH, Jabbour JM, Maitland KC, et al. Handheld multispectral fluorescence lifetime imaging system for in vivo applications. Biomed Opti Express. 2014;5:921–31.

    Google Scholar 

  65. Chen Y-W, Liaw Y-K, Hung H-R, Chung P-C, Tseng S-H Differentiating early oral cancer from normal oral tissue using diffuse reflectance spectroscopy. In: Asia communications and photonics conference, 2013. Optical Society of America. p. AF4I. 3.

    Google Scholar 

  66. Skala MC, Palmer GM, Vrotsos KM, Gendron-Fitzpatrick A, Ramanujam N. Comparison of a physical model and principal component analysis for the diagnosis of epithelial neoplasias in vivo using diffuse reflectance spectroscopy. Opt Express. 2007;15:7863–75.

    Google Scholar 

  67. Matheny ES, Hanna NM, Jung WG, Chen Z, Wilder-Smith P, Mina-Araghi R, et al. Optical coherence tomography of malignancy in hamster cheek pouches. J Biomed Opt. 2004;9:978–81.

    Google Scholar 

  68. Hanna NM, Waite W, Taylor K, Jung WG, Mukai D, Matheny E, et al. Feasibility of three-dimensional optical coherence tomography and optical Doppler tomography of malignancy in hamster cheek pouches. Photomed Laser Surg. 2006;24:402–9.

    Google Scholar 

  69. Graf RN, Robles FE, Chen X, Wax A. Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations. J Biomed Opt. 2009;14:064030.

    Google Scholar 

  70. Pande P, Shrestha S, Park J, Serafino MJ, Gimenez-Conti I, Brandon J, Cheng Y-S, Applegate BE, Jo JA. Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch. J Biomed Opt. 2014;19:086022.

    Google Scholar 

  71. Wilder-Smith P, Jung W-G, Brenner M, Osann K, Beydoun H, Messadi D, Chen Z. In vivo optical coherence tomography for the diagnosis of oral malignancy. Lasers Surg Med. 2004;35:269–75.

    Article  Google Scholar 

  72. Jung W, Zhang J, Chung J, Wilder-Smith P, Brenner M, Nelson JS, Chen Z. Advances in oral cancer detection using optical coherence tomography. IEEE J Sel Top Quantum Electron. 2005;11:811–7.

    Article  Google Scholar 

  73. Kumar P, Krishna CM, Sahoo NK, Rao KD. Multimodal spectroscopic applications in cancer diagnosis: combined Raman spectroscopy and optical coherence tomography. Asian J Phys. 2015;24:00.

    Google Scholar 

  74. Kumar P. Raman spectroscopy in experimental oral carcinogenesis: investigation of abnormal changes in control tissues. J Raman Spectrosc. 2016;47:1318–26.

    Google Scholar 

  75. Pande P, Shrestha S, Park J, Gimenez-Conti I, Brandon J, Applegate BE, et al. Automated analysis of multimodal fluorescence lifetime imaging and optical coherence tomography data for the diagnosis of oral cancer in the hamster cheek pouch model. Biomed Opt Express. 2016;7:2000–15.

    Google Scholar 

  76. Mognetti B, Di Carlo F, Berta GN. Animal models in oral cancer research. Oral Oncol. 2006;42:448–60.

    Google Scholar 

  77. Mizuno A, Nozawa H, Yaginuma T, Matsuzaki H, Ozaki Y, Iriyama K. Effect of aldose reductase inhibitor on experimental diabetic cataract monitored by laser Raman spectroscopy. Exp Eye Res. 1987;45:185–6.

    Article  Google Scholar 

  78. Mizuno A, Toshima S, Mori Y. Confirmation of lens hydration by Raman spectroscopy. Exp Eye Res. 1990;50:647–9.

    Article  Google Scholar 

  79. Nozawa H, Yaginuma T, Mizuno A. Raman spectroscopic study of the effect of aldose reductase inhibitor on experimental diabetic cataract. Nippon Ganka Gakkai Zasshi. 1988;92:194–201.

    PubMed  Google Scholar 

  80. Mizuno A, Kanematsu EH, Suzuki H, Ihara N. Laser Raman spectroscopic study of hereditary cataractous lenses in ICR/f-strain rat. Jpn J Ophthalmol. 1988;32:281–7.

    PubMed  Google Scholar 

  81. Wang C, Wang Y, Huffman NT, Cui C, Yao X, Midura S, et al. Confocal laser Raman microspectroscopy of biomineralization foci in UMR 106 osteoblastic cultures reveals temporally synchronized protein changes preceding and accompanying mineral crystal deposition. J Biol Chem. 2009;284:7100–13.

    Google Scholar 

  82. Ohsaki K, Shibata A, Yamashita S, Oe M, Wang KQ, Cui PC, et al. Demonstrations of de-and remineralization mechanism as revealed in synthetic auditory ossicle (Apaceram) of rats by laser-Raman spectrometry. Cell Mol Biol (Noisy-le-Grand). 1995;41:1155–67.

    Google Scholar 

  83. Oliveira AP, Bitar RA, Silveira L, Zangaro RA, Martin AA. Near-infrared Raman spectroscopy for oral carcinoma diagnosis. Photomed Laser Surg. 2006;24:348–53.

    Google Scholar 

  84. Ghanate AD, Kumar G, Talathi S, Maru GB, Krishna CM Raman spectroscopic detection of early stages in DMBA-induced tumor evolution in hamster buccal pouch model: an exploratory study. In: Photonics 2010: Tenth International Conference on Fiber Optics and Photonics; 817303 (2011), Proceedings Volume 8173. International Conference on Fiber Optics and Photonics, 2010, Guwahati, India. p. 817303–817307.

    Google Scholar 

  85. Singh SP, Sahu A, Deshmukh A, Chaturvedi P, Krishna CM. In vivo Raman spectroscopy of oral buccal mucosa: a study on malignancy associated changes (MAC)/cancer field effects (CFE). Analyst. 2013;138:4175–82.

    Google Scholar 

  86. Singh SP, Deshmukh A, Chaturvedi P, Murali Krishna C. In vivo Raman spectroscopic identification of premalignant lesions in oral buccal mucosa. J Biomed Opt. 2012;17:105002.

    Google Scholar 

  87. Singh SP, Deshmukh A, Chaturvedi P, Krishna CM. Raman spectroscopy in head and neck cancers: toward oncological applications. J Cancer Res Ther. 2012;8:S126–32.

    Google Scholar 

  88. Deshmukh A, Singh SP, Chaturvedi P, Krishna CM. Raman spectroscopy of normal oral buccal mucosa tissues: study on intact and incised biopsies. J Biomed Opt. 2011;16:127004.

    Google Scholar 

  89. Sahu A, Deshmukh A, Ghanate AD, Singh SP, Chaturvedi P, Krishna CM. Raman spectroscopy of oral buccal mucosa: a study on age-related physiological changes and tobacco-related pathological changes. Technol Cancer Res Treat. 2012;11:529–41.

    Article  Google Scholar 

  90. Kumar P, Bhattacharjee T, Ingle A, Maru G, Krishna CM. Raman spectroscopy of experimental oral carcinogenesis: study on sequential cancer progression in hamster buccal pouch model. Technol Cancer Res Treat. 2016;15:NP60–72.

    Google Scholar 

  91. Gohulkumar M, Kumar P, Murali Krishna C, Krishnakumar N. Evaluation of Raman spectroscopy for prediction of antitumor response to silibinin and its nanoparticulates in DMBA-induced oral carcinogenesis. J Raman Spectrosc. 2016; 47:375–383.

    Google Scholar 

  92. Gurushankar K, Gohulkumar M, Kumar P, Krishna CM, Krishnakumar N. Raman spectroscopy detects biomolecular changes associated with nanoencapsulated hesperetin treatment in experimental oral carcinogenesis. Laser Phys Lett. 2016;13:035901.

    Google Scholar 

  93. Sharwani A, Jerjes W, Salih V, MacRobert A, El-Maaytah M, Khalil H, et al. Fluorescence spectroscopy combined with 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in detecting oral premalignancy. J Photochem Photobiol B. 2006;83:27–33.

    Google Scholar 

  94. Betz CS, Stepp H, Janda P, Arbogast S, Grevers G, Baumgartner R, et al. A comparative study of normal inspection, autofluorescence and 5-ALA-induced PPIX fluorescence for oral cancer diagnosis. Int J Cancer. 2002;97:245–52.

    Google Scholar 

  95. Leunig A, Betz CS, Mehlmann M, Stepp H, Arbogast S, Grevers G, et al. Detection of squamous cell carcinoma of the oral cavity by imaging 5-aminolevulinic acid-induced protoporphyrin IX fluorescence. Laryngoscope. 2000;110:78–83.

    Google Scholar 

  96. Policard A. Etude sur les aspects offerts par des tumeurs experimentales examinees a la lumiere de Wood. CR Soc Biol. 1924;91:1423–4.

    Google Scholar 

  97. Heintzelman DL, Utzinger U, Fuchs H, Zuluaga A, Gossage K, Gillenwater AM, et al. Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy. Photochem Photobiol. 2000;72(1):103–13.

    Google Scholar 

  98. Gillenwater A, Jacob R, Ganeshappa R, Kemp B, El-Naggar AK, Palmer JL, et al. Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence. Arch Otolaryngol Head Neck Surg. 1998;124:1251–8.

    Google Scholar 

  99. Braichotte DR, Wagnieres GA, Bays R, Monnier P, van den Bergh HE. Clinical pharmacokinetic studies of photofrin by fluorescence spectroscopy in the oral cavity, the esophagus, and the bronchi. Cancer-Philadelphia. 1995;75:2768.

    Article  Google Scholar 

  100. Ebenezar J, Ganesan S, Aruna P, Muralinaidu R, Renganathan K, Saraswathy TR. Noninvasive fluorescence excitation spectroscopy for the diagnosis of oral neoplasia in vivo. J Biomed Opt. 2012;17:97007–1.

    Google Scholar 

  101. Müller MG, Valdez TA, Georgakoudi I, Backman V, Fuentes C, Kabani S, et al. Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma. Cancer. 2003;97:1681–92.

    Google Scholar 

  102. Venugopal C, Nazeer SS, Balan A, Jayasree R. Autofluorescence spectroscopy augmented by multivariate analysis as a potential noninvasive tool for early diagnosis of oral cavity disorders. Photomed Laser Surg. 2013;31:605–12.

    Article  Google Scholar 

  103. Haris PS, Balan A, Jayasree RS, Gupta AK. Autofluorescence spectroscopy for the in vivo evaluation of oral submucous fibrosis. Photomed Laser Surg. 2009;27:757–61.

    Google Scholar 

  104. Jayanthi J, Mallia RJ, Shiny ST, Baiju KV, Mathews A, Kumar R, et al. Discriminant analysis of autofluorescence spectra for classification of oral lesions in vivo. Lasers Surg Med. 2009;41:345–52.

    Google Scholar 

  105. Shaiju SN, Ariya S, Asish R, Haris PS, Anita B, Kumar GA, Jayasree RS. Habits with killer instincts: in vivo analysis on the severity of oral mucosal alterations using autofluorescence spectroscopy. J Biomed Opt. 2011;16:087006.

    Google Scholar 

  106. Nazeer SS, Asish R, Venugopal C, Anita B, Gupta AK, Jayasree RS. Noninvasive assessment of the risk of tobacco abuse in oral mucosa using fluorescence spectroscopy: a clinical approach. J Biomed Opt. 2014;19:057013..

    Google Scholar 

  107. Unnikrishnan V, Nayak R, Bernard R, Priya KJ, Patil A, Ebenezer J, et al. Parameter optimization of a laser-induced fluorescence system for in vivo screening of oral cancer. J Laser Appl. 2011;23:032004.

    Google Scholar 

  108. Jerjes W, Swinson B, Pickard D, Thomas G, Hopper C. Detection of cervical intranodal metastasis in oral cancer using elastic scattering spectroscopy. Oral Oncol. 2004;40:673–8.

    Article  Google Scholar 

  109. Jerjes W, Swinson B, Johnson K, Thomas G, Hopper C. Assessment of bony resection margins in oral cancer using elastic scattering spectroscopy: a study on archival material. Arch Oral Biol. 2005;50:361–6.

    Article  Google Scholar 

  110. De Veld DC, Skurichina M, Witjes MJ, Duin RP, Sterenborg HJ, Roodenburg JL. Autofluorescence and diffuse reflectance spectroscopy for oral oncology. Lasers Surg Med. 2005;36:356–64.

    Article  Google Scholar 

  111. Subhash N, Mallia J, Thomas SS, Mathews A, Sebastian P, Madhavan J. Oral cancer detection using diffuse reflectance spectral ratio R540∕ R575 of oxygenated hemoglobin bands. J Biomed Opt. 2006;11:014018.

    Google Scholar 

  112. Jayanthi J, Nisha G, Manju S, Philip E, Jeemon P, Baiju K, et al. Diffuse reflectance spectroscopy: diagnostic accuracy of a non-invasive screening technique for early detection of malignant changes in the oral cavity. BMJ Open. 2011;1:e000071.

    Google Scholar 

  113. Mallia R, Thomas SS, Mathews A, Kumar R, Sebastian P, Madhavan J, et al. Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral pre-cancer. J Biomed Opt. 2008;13:041306.

    Google Scholar 

  114. Yu B, Shah A, Nagarajan VK, Ferris DG. Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe. Biomed Opt Express. 2014;5:675–89.

    Article  Google Scholar 

  115. Mallia RJ, Narayanan S, Madhavan J, Sebastian P, Kumar R, Mathews A, et al. Diffuse reflection spectroscopy: an alternative to autofluorescence spectroscopy in tongue cancer detection. Appl Spectrosc. 2010;64:409–18.

    Google Scholar 

  116. Jerjes W, Upile T, Betz CS, Abbas S, Sandison A, Hopper C. Detection of oral pathologies using optical coherence tomography. Eur Oncol. 2008;4:57–9.

    Google Scholar 

  117. Hamdoon Z, Jerjes W, Al-Delayme R, McKenzie G, Jay A, Hopper C. Structural validation of oral mucosal tissue using optical coherence tomography. Head Neck Oncol. 2012;4:1.

    Article  Google Scholar 

  118. Wu JG, Xu YZ, Sun CW, Soloway RD, Xu DF, Wu QG, et al. Distinguishing malignant from normal oral tissues using FTIR fiber-optic techniques. Biopolymers. 2001;62:185–92.

    Google Scholar 

  119. Fukuyama Y, Yoshida S, Yanagisawa S, Shimizu M. A study on the differences between oral squamous cell carcinomas and normal oral mucosas measured by Fourier transform infrared spectroscopy. Biospectroscopy. 1999;5:117–26.

    Article  Google Scholar 

  120. Banerjee S, Pal M, Chakrabarty J, Petibois C, Paul RR, Giri A, et al. Fourier-transform-infrared-spectroscopy based spectral-biomarker selection towards optimum diagnostic differentiation of oral leukoplakia and cancer. Anal Bioanal Chem. 2015;407:7935–43.

    Google Scholar 

  121. Venkatakrishna K, Kurien J, Pai KM, Valiathan M, Kumar NN, Murali Krishna C, et al. Optical pathology of oral tissue: a Raman spectroscopy diagnostic method. Current Sci. 2001;80:665–9.

    Google Scholar 

  122. Krishna CM, Sockalingum G, Kurien J, Rao L, Venteo L, Pluot M, et al. Micro-Raman spectroscopy for optical pathology of oral squamous cell carcinoma. Appl Spectrosc. 2004;58:1128–35.

    Google Scholar 

  123. Malini R, Venkatakrishna K, Kurien J, Pai KM, Rao L, Kartha VB, et al. Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: a Raman spectroscopy study. Biopolymers. 2006;81(3):179–93.

    Google Scholar 

  124. Hu Y, Jiang T, Zhao Z. Discrimination of squamous cell carcinoma of the oral cavity using Raman spectroscopy and chemometric analysis. In: ICINIS'08 First International Conference on. Intelligent networks and intelligent systems, 2008. IEEE; 2008. p. 633–6.

    Google Scholar 

  125. Sunder N, Rao N, Kartha V, Ullas G, Kurien J. Laser raman spectroscopy: a novel diagnostic tool for oral cancer. J Orofac Sci. 2011;3:15.

    Google Scholar 

  126. Behl I, Kukreja L, Deshmukh A, Singh SP, Mamgain H, Hole AR et al. Raman mapping of oral buccal mucosa: a spectral histopathology approach. J Biomed Opt. 2014;19:126005.

    Google Scholar 

  127. Cals FL, Bakker Schut TC, Hardillo JA, Baatenburg de Jong RJ, Koljenovic S, Puppels GJ. Investigation of the potential of Raman spectroscopy for oral cancer detection in surgical margins. Lab Investig. 2015;95:1186–96.

    Google Scholar 

  128. Baker MJ, Hussain SR, Lovergne L, Untereiner V, Hughes C, Lukaszewski RA, et al. Developing and understanding biofluid vibrational spectroscopy: a critical review. Chem Soc Rev. 2016;45:1803–18.

    Google Scholar 

  129. Madhuri S, Vengadesan N, Aruna P, Koteeswaran D, Venkatesan P, Ganesan S. Native fluorescence spectroscopy of blood plasma in the characterization of oral malignancy. Photochem Photobiol. 2003;78:197–204.

    Article  Google Scholar 

  130. Rajasekaran R, Aruna PR, Koteeswaran D, Padmanabhan L, Muthuvelu K, Rai RR, et al. Characterization and diagnosis of cancer by native fluorescence spectroscopy of human urine. Photochem Photobiol. 2013;89:483–91.

    Google Scholar 

  131. Harris AT, Lungari A, Needham CJ, Smith SL, Lones MA, Fisher SE, et al. Potential for Raman spectroscopy to provide cancer screening using a peripheral blood sample. Head Neck Oncol. 2009;1:1–8.

    Google Scholar 

  132. Feng S, Chen R, Lin J, Pan J, Chen G, Li Y, et al. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens Bioelectron. 2010;25:2414–9.

    Google Scholar 

  133. Sahu A, Sawant S, Mamgain H, Krishna CM. Raman spectroscopy of serum: an exploratory study for detection of oral cancers. Analyst. 2013;138:4161–74.

    Google Scholar 

  134. Sahu A, Sawant S, Talathi-Desai S, Murali Krishna C. Raman spectroscopy of serum: a study on oral cancers. Biomed Spectrosc Imaging. 2015;4(2):171–87.

    Google Scholar 

  135. Sahu AK, Dhoot S, Singh A, Sawant SS, Nandakumar N, Talathi-Desai S et al. Oral cancer screening: serum Raman spectroscopic approach. J Biomed Opt. 2015;20:115006.

    Google Scholar 

  136. Sahu A, Nandakumar N, Sawant S, Krishna CM. Recurrence prediction in oral cancers: a serum Raman spectroscopy study. Analyst. 2015;140:2294–301.

    Article  Google Scholar 

  137. Elumalai B, Prakasarao A, Ganesan B, Dornadula K, Ganesan S. Raman spectroscopic characterization of urine of normal and oral cancer subjects. J Raman Spectrosc. 2015;46:84–93.

    Article  Google Scholar 

  138. Sahu A, Tawde S, Pai V, Gera P, Chaturvedi P, Nair S, et al. Raman spectroscopy and cytopathology of oral exfoliated cells for oral cancer diagnosis. Anal Methods. 2015;7:7548–59.

    Google Scholar 

  139. Sharwani A, Jerjes W, Salih V, Swinson B, Bigio I, El-Maaytah M, et al. Assessment of oral premalignancy using elastic scattering spectroscopy. Oral Oncol. 2006;42:343–9.

    Google Scholar 

  140. Stephen MM, Jayanthi JL, Unni NG, Kolady PE, Beena VT, Jeemon P, et al. Diagnostic accuracy of diffuse reflectance imaging for early detection of pre-malignant and malignant changes in the oral cavity: a feasibility study. BMC Cancer. 2013;13:1.

    Google Scholar 

  141. Einstein G, Udayakumar K, Aruna PR, Koteeswaran D, Ganesan S. Diffuse reflectance spectroscopy for monitoring physiological and morphological changes in oral cancer. Optik-Int J Light Electron Opt. 2016;127:1479–85.

    Article  Google Scholar 

  142. Prestin S, Rothschild SI, Betz CS, Kraft M. Measurement of epithelial thickness within the oral cavity using optical coherence tomography. Head Neck. 2012;34:1777–81.

    Article  Google Scholar 

  143. Lee CK, Chi TT, Wu CT, Tsai MT, Chiang CP, Yang CC. Diagnosis of oral precancer with optical coherence tomography. Biomed Opt Express. 2012;3:1632–46.

    Google Scholar 

  144. Divakar Rao K, Sahoo N, Krishna CM. Perspectives of optical coherence tomography imaging and Raman spectroscopy in cancer diagnosis. Biomed Spectrosc Imaging. 2015;4:35–55.

    Google Scholar 

  145. Reddy RS, Praveen KNS. Optical coherence tomography in oral cancer: a transpiring domain. J Cancer Res Ther. 2017;13:883–888.

    Google Scholar 

  146. Lee AM, Goldan R, Pahlevaninezhad H, Hohert G, Liu K, MacAulay CE, et al. Towards biopsy guidance of oral lesions with wide-field OCT imaging. In: Biomedical optics 2016, Fort lauderdale, Florida, 2016/04/25 2016. OSA Technical Digest (online). Opt Soc Am. p. JM4A.4.

    Google Scholar 

  147. Haka AS, Volynskaya Z, Gardecki JA, Nazemi J, Lyons J, Hicks D et al. In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy. Cancer Res. 2006;66:3317–22.

    Google Scholar 

  148. Guze K, Short M, Sonis S, Karimbux N, Chan J, Zeng H. Parameters defining the potential applicability of Raman spectroscopy as a diagnostic tool for oral disease. J Biomed Opt. 2009;14:014016-014016-014019.

    Article  Google Scholar 

  149. Bergholt MS, Zheng W, Huang Z. Characterizing variability in in vivo Raman spectroscopic properties of different anatomical sites of normal tissue in the oral cavity. J Raman Spectrosc. 2012;43:255–62.

    Article  Google Scholar 

  150. Singh S, Deshmukh A, Chaturvedi P, Krishna CM. In vivo Raman spectroscopy for oral cancers diagnosis. In: SPIE BiOS, 2012. International society for optics and photonics. p. 82190K–82190K–82196.

    Google Scholar 

  151. Krishna H, Majumder SK, Chaturvedi P, Gupta PK. Anatomical variability of in vivo Raman spectra of normal oral cavity and its effect on oral tissue classification. Biomed Spectrosc Imaging. 2013;2:199–217.

    Google Scholar 

  152. Krishna H, Majumder SK, Chaturvedi P, Sidramesh M, Gupta PK. In vivo Raman spectroscopy for detection of oral neoplasia: a pilot clinical study. J Biophotonics. 2014;7:690–702.

    Article  Google Scholar 

  153. Sahu A, Deshmukh A, Hole AR, Chaturvedi P, Krishna CM. In vivo subsite classification and diagnosis of oral cancers using Raman spectroscopy. J Innov Opt Health Sci. 2016;09:1650017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Murali Krishna PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, P., Murali Krishna, C. (2019). Optical Techniques: Investigations in Oral Cancers. In: Panta, P. (eds) Oral Cancer Detection. Springer, Cham. https://doi.org/10.1007/978-3-319-61255-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61255-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61254-6

  • Online ISBN: 978-3-319-61255-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics