Skip to main content

Bioimpedance in Oral Cancer

  • Chapter
  • First Online:
Oral Cancer Detection

Abstract

Bioimpedance is described as the response of living organisms to an external current. It is an amount of obstruction to the flow of the external current through the tissues. Bioimpedance is a noninvasive method for evaluating the structure of a living organism. A bioimpedance signal can be used for describing the tissues. Bioimpedance of a tissue differs with different applied frequencies. It is an established technique in detection of breast cancer, cervical cancer, prostate cancer, and other cancers. There are evidences that significant differences exist between bioimpedance of normal and malignant tissue. With this view in mind, a comprehensive description of the technique is hereby given to deliberate the role of bioimpedance with a special emphasis on oral cancer. We have also discussed the studies carried out on oral potentially malignant disorders (OPMDs) and oral squamous cell carcinoma (OSCC) and realized the necessity for more studies especially on OPMDs and OSCC together.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heaviside O. The Electrician: AMS Bookstore; 23 July 1886., reprinted as Electrical Papers, p 64. p. 212. isbn:ISBN 0-8218-3465-7.

  2. Kennelly AE. Impedance. Trans Am Inst Electr Eng. 1893;10:172–232.

    Article  Google Scholar 

  3. Weaver JC. Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem. 1993;51:426–35.

    Article  Google Scholar 

  4. Bayford RH. Bioimpedance tomography (electrical impedance tomography). Annu Rev Biomed Eng. 2006;8:63–91.

    Article  Google Scholar 

  5. Scholz B, Anderson R. On electrical impedance scanning—principles and simulations. Electromedica. 2000;68:35–44.

    Google Scholar 

  6. Davey CL, Markx GH, Kell DB. On the dielectric method of monitoring cellular viability. Pure Appl Chem. 1993;65:1921–6.

    Article  Google Scholar 

  7. Abdul S, Brown BH, Milnes P, Tidy JA. A clinical study of the use of impedance spectroscopy in the detection of cervical intraepithelial neoplasia (CIN). Gynecol Oncol. 2005;99:S64–6.

    Article  Google Scholar 

  8. Brown BH, Tidy JA, Boston K, Blackett AD, Smallwood RH, Sharp F. Relation between tissue structure and imposed electrical current flow in cervical neoplasia. Lancet. 2000;355:892–5.

    Article  Google Scholar 

  9. Bera TK, Nagaraju J. Electrical impedance spectroscopic study of broiler chicken tissues suitable for the development of practical phantoms in multifrequency EIT. J Electr Bioimpedance. 2011;2:48–63.

    Google Scholar 

  10. Bauchot AD, Harker FR, Arnold WM. The use of electrical impedance spectroscopy to assess the physiological condition of kiwifruit. Postharvest Biol Technol. 2000;18:9–18.

    Article  Google Scholar 

  11. Abdul S, Brown BH, Milnes P, Tidy JA. The use of electrical impedance spectroscopy in the detection of cervical intraepithelial neoplasia. Int J Gynecol Cancer. 2006;16:1823–32.

    Article  Google Scholar 

  12. Zou Y, Gou Z. A review of electrical impedance techniques for breast cancer detection. Med Eng Phys. 2003;25:79–90.

    Article  Google Scholar 

  13. Kay CF, Bothwell PT, Foltz EL. Electrical resistivity of living body tissues at low frequencies. J Physiol. 1954;13:131–6.

    Google Scholar 

  14. Nyboer J. Electrical impedance plethysmography. Hoboken/Springfield, IL: Blackwell/Charles C. Thomas; 1959. p. xvii+243. 60s

    Google Scholar 

  15. Baker LE. Principles of the impedance technique. IEEE Eng Med Biol Mag. 1989;3:11–5.

    Article  Google Scholar 

  16. Baumgartner RN, Chumlea WC, Roche AF. Bioelectric impedance phase angle and body composition. Am J Clin Nutr. 1988;48:16–23.

    Article  Google Scholar 

  17. Pethig R. Dielectric properties of body tissues. Clin Phys Physiol Meas. 1987;8:A5–A12.

    Article  Google Scholar 

  18. Blad B, Baldetorp B. Impedance spectra of tumor tissue in comparison with normal tissue: a possible clinical application for electrical impedance tomography. Physiol Meas. 1996;17:A105–A15.

    Article  Google Scholar 

  19. Rabbat A. Tissue resistivity. In: Webster JG, editor. Electrical impedance tomography. Bristol and New York: IOP Publishing; 1990. p. 8–20.

    Google Scholar 

  20. Schwan HP. The practical success of impedance techniques from an historical perspective. Ann N Y Acad Sci. 1999;873:1–12.

    Article  Google Scholar 

  21. Grimnes S, Martinsen O. Bioimpedance and bioelectricity basics. 2nd ed: Academic Press. Department of physics. The Faculty of Mathematics and Natural Sciences Site ; 2008.www.mn.uio.no

  22. Institute of Medicine (US) Committee on Military Nutrition Research. Carlson-Newberry SJ, Costello RB, editors. Emerging technologies for nutrition research: potential for assessing military performance capability. Washington, DC: National Academies Press (US); 1997.

    Google Scholar 

  23. Chumlea WC, Guo SS. Bioelectrical impedance: a history, research issues, and recent consensus. In: Institute of Medicine (US) Committee on Military Nutrition Research, Carlson-Newberry SJ, Costello RB, editors. . Washington, DC: National Academies Press (US); 1997.

    Google Scholar 

  24. Castelló J, García-Gil R, Espí JM. A PC-based low cost impedance and gain-phase analyzer. Measurement. 2008;41:631–6.

    Article  Google Scholar 

  25. Yang Y, Wang J. A design of bioimpedance spectrometer for early detection of pressure ulcere. In: Engineering in Medicine and Biology Society, IEEE-EMBS 2005. 27th Annual International Conference of the IEEE; 2005. p. 6602–4.

    Google Scholar 

  26. Yang Y, Wang J, Yu G, Niu F, He P. Design and preliminary evaluation of a portable device for the measurement of bioimpedance spectroscopy. Physiol Meas. 2006;27:1293.

    Article  Google Scholar 

  27. Seoane F, Bragós R, Lindecrantz K. Current source for multifrequency broadband electrical bioimpedance spectroscopy systems. A novel approach. In: Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE; 2006. p. 5121–5.

    Chapter  Google Scholar 

  28. Zlochiver S, Arad M, Radai MM, Barak-Shinar D, Krief H, Engelman T, Abboud S. A portable bio-impedance system for monitoring lung resistivity. Med Eng Phys. 2007;29:93–100.

    Article  Google Scholar 

  29. Rangraz P, Sheikhani A, Hemmati N. Design and simulation of a current source for electrical impedance tomography. In: Proceedings of the 24th IASTED international conference on Biomedical engineering: ACTA Press. p. 396–400.

    Google Scholar 

  30. Dickin F, Wang M. Electrical resistance tomography for process applications. Meas Sci Technol. 1996;7:247.

    Article  Google Scholar 

  31. Sun T, Tsuda S, Zauner KP, Morgan H. On-chip electrical impedance tomography for imaging biological cells. Biosens Bioelectron. 2010;25:1109–15.

    Article  Google Scholar 

  32. Chai KT, Hammond PA, Cumming DRS. Modification of a CMOS microelectrode array for a bioimpedance imaging system. Sens Actuators B Chem. 2005;111:305–9.

    Article  Google Scholar 

  33. Ching CTS, Chen JH. A non-invasive, bioimpedance-based 2-dimensional imaging system for detection and localization of pathological epithelial tissues. Sens Actuators B Chem. 2015;206:319–26.

    Article  Google Scholar 

  34. Rodriguez S, Ollmar S, Waqar M, Rusu AA. Batteryless sensor ASIC for implantable bio-impedance applications. IEEE Trans Biomed. 2015;10:533–44.

    Google Scholar 

  35. Surowiec A, Stanislaw SS, Barr JR, Swarup A. Dielectric properties of breast carcinoma and the surrounding tissues. IEEE Trans Biomed Eng. 1988;35:257–63.

    Article  Google Scholar 

  36. Morimoto T, Kinouchi Y, Iritani T, Kimura S, Konishi Y, Mitsuyama N, et al. Measurement of the electrical bioimpedance of breast tumors. Eur Surg Res. 1990;22:86–92.

    Article  Google Scholar 

  37. Morimoto T, Kimura S, Konishi Y, Komaki K, Uyama T, Monden Y, et al. A study of the electrical bio-impedance of tumors. J Investig Surg. 1993;6:25–32.

    Article  Google Scholar 

  38. Joines WT, Zhang Y, Li C, Jirtle RL. The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. Med Phys. 1994;21:547–50.

    Article  Google Scholar 

  39. Jossinet J. Variability of impedivity in normal and pathological breast tissue. Med Biol Eng Comput. 1996;34:346–50.

    Article  Google Scholar 

  40. Jossinet J. The impedivity of freshly excised human breast tissue. Physiol Meas. 1998;19:61–75.

    Article  Google Scholar 

  41. Jossinet J, Schmitt M. A review of parameters for the bioelectrical characterization of breast tissue. Ann N Y Acad Sci. 1999;873:30–41.

    Article  Google Scholar 

  42. Emtestam L, Nicander I, Stenström M, Ollmar S. Electrical impedance of nodular basal cell carcinoma: a pilot study. Dermatology. 1998;197:313–6.

    Article  Google Scholar 

  43. Chauveau N, Hamzaoui L, Rochaix P, Rigaud B, Voigt JJ, Morucci JP. Ex vivo discrimination between normal and pathological tissues in human breast surgical biopsies using bioimpedance spectroscopy. Ann N Y Acad Sci. 1999;873:42–50.

    Article  Google Scholar 

  44. Lee BR, Roberts WW, Smith DG, Ko HW, Epstein JI, Lecksell K. Bioimpedance: novel use of a minimally invasive technique for cancer localization in the intact prostate. Prostate. 1999;39:213–8.

    Article  Google Scholar 

  45. Malich A, Boehm T, Facius M, Freesmeyer M, Azhari T, Werner B. Electrical impedance scanning of lymph nodes: initial clinical and technical findings. Clin Radiol. 2002;57:579–86.

    Article  Google Scholar 

  46. Glickman YA, Filo O, David M, Yayon A, Topaz M, Zamir B, et al. Electrical impedance scanning: a new approach to skin cancer diagnosis. Skin Res Technol. 2003;9:262–8.

    Article  Google Scholar 

  47. Beetner DG, Kapoor S, Manjunath S, Zhou X, Stoecker WV. Differentiation among basal cell carcinoma, benign lesions, and normal skin using electric impedance. IEEE Trans Biomed Eng. 2003;50:1020–5.

    Article  Google Scholar 

  48. Hope TA, Iles SE. Technology review: the use of electrical impedance scanning in the detection of breast cancer. Breast Cancer Res. 2004;6:69–74.

    Article  Google Scholar 

  49. Ohmine Y, Morimoto T, Kinouchi Y, Iritani T, Takeuchi M, Haku M, et al. Basic study of new diagnostic modality according to non-invasive measurement of the electrical conductivity of tissues. J Med Investig. 2004;51:218–25.

    Article  Google Scholar 

  50. Aberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S. Skin cancer identification using multifrequency electrical impedance-a potential screening tool. IEEE Trans Biomed Eng. 2004;51:2097–102.

    Article  Google Scholar 

  51. Aberg P, Geladi P, Nicander I, Hansson J, Holmgren U, Ollmar S. Non-invasive and microinvasive electrical impedance spectra of skin cancer—a comparison between two techniques. Skin Res Technol. 2005;11:281–6.

    Article  Google Scholar 

  52. Abdul S, Brown BH, Milnes P, Tidy JA. A clinical study of the use of impedance spectroscopy in the detection of cervical intraepithelial neoplasia (CIN). Gynecol Oncol. 2005;99:64–6.

    Article  Google Scholar 

  53. Gupta D, Lammersfeld CA, Vashi PG, King J, Dahlk LK, Grutsch JF, et al. Bioelectrical impedance phase angle as a prognostic indicator in breast cancer. BMC Cancer. 2008;8:249.

    Article  Google Scholar 

  54. Halter RJ, Schned A, Heaney J, Hartov A, Schutz S, Paulsen KD. Electrical impedance spectroscopy of benign and malignant prostatic tissues. J Urol. 2008;179:1580–6.

    Article  Google Scholar 

  55. Ching CT, Sun TP, Huang SH, Hsiao CS, Chang CH, Huang SY. A preliminary study of the use of bioimpedance in the screening of squamous tongue cancer. Int J Nanomedicine. 2010;7:213–20.

    Article  Google Scholar 

  56. Sun TP, Ching CT, Cheng CS, Huang SH, Chen YJ, Hsiao CS, et al. The use of bioimpedance in the detection/screening of tongue cancer. Cancer Epidemiol. 2010;34:207–11.

    Article  Google Scholar 

  57. Arias LR, Perry CA, Yang L. Real-time electrical impedance detection of cellular activities of oral cancer cells. Biosens Bioelectron. 2010;25:2225–31.

    Article  Google Scholar 

  58. Yang L, Arias LR, Lane TS, Yancey MD, Mamouni J. Real-time electrical impedance-based measurement to distinguish oral cancer cells and noncancer oral epithelial cells. Anal Bioanal Chem. 2011;399:1823–33.

    Article  Google Scholar 

  59. Sarode GS, Sarode GS, Kulkarni M, Karmarkar S, Patil S, Augustine D. Bioimpedance Assessment of oral squamous cell carcinoma with clinic-pathologic correlation. J Contemp Dent Pract. 2015;16:715–22.

    Article  Google Scholar 

  60. Wang Y, Borsic A, Heaney J, Seigne J, Schned A, Baker M, et al. Transrectal electrical impedance tomography of the prostate: spatially coregistered pathological findings for prostate cancer detection. Med Phys. 2013;40:063102.

    Article  Google Scholar 

  61. Sarode GS, Sarode SC. 370P Determination of bioimpedance in oral potentially malignant disorders. Ann Oncol. 2016;27(suppl_9). mdw587.012

    Google Scholar 

  62. Balasubramani L, Brown BH, Healey J, Tidy JA. The detection of cervical intraepithelial neoplasia by electrical impedance spectroscopy: the effects of acetic acid and tissue homogeneity. Gynecol Oncol. 2009;115:267–71.

    Article  Google Scholar 

  63. Sarode GS, Sarode SC, Kulkarni M, Karmarkar S, Patil S. Role of bioimpedance in cancer detection: a brief review. Int J Dent Sci Res. 2016;3:15–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarode, G.S., Sarode, S.C., Panta, P. (2019). Bioimpedance in Oral Cancer. In: Panta, P. (eds) Oral Cancer Detection. Springer, Cham. https://doi.org/10.1007/978-3-319-61255-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61255-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61254-6

  • Online ISBN: 978-3-319-61255-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics