Skip to main content

3D Bioprinting in Nipple-Areola Complex Reconstruction

  • Chapter
  • First Online:
Nipple-Areolar Complex Reconstruction

Abstract

Nipple-areola complex (NAC) constitutes an important landmark on a breast, and its loss due to breast cancer treatment can be devastating. In order to achieve cure, an increasing number of women are opting for aggressive mastectomy early, and evidences demonstrate that postmastectomy breast reconstruction significantly improves the patient well-being. Similarly, evidences demonstrate that significant improvement in psychosexual well-being and patient satisfaction can be achieved following a successful NAC reconstruction. Historically various reconstructive options have been reported, such as local flaps, pigmented skin grafts, tattooing, local flaps with autologous, allograft, or alloplastic graft augmentation. However, current reconstructive techniques have inconsistent long-term outcomes regarding maintenance of the neo-nipple projection, color, size, shape, and texture, leading to polarizing patient satisfaction rates. To this effect, novel regenerative medicine technology, three-dimensional (3D) bioprinting, which combines the conventional tissue engineering with 3D printing platform, has been touted as a potential solution. In comparison to other tissue types, reconstructing a 3D solid organ, such as a NAC, undoubtedly commands a higher degree of complexity. Various tissue-engineered NAC reconstructions using synthetic or decellularized allograft scaffolds have been reported. Recently, TeVido BioDevices company has begun developing an entirely 3D-printed NAC graft, but the results are currently limited to preclinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. DeSantis C, Ma J, Bryan L, Jemal A. Breast cancer statistics, 2013. CA Cancer J Clin. 2014;64:52–62.

    Article  PubMed  Google Scholar 

  2. Shons AR, Mosiello G. Postmastectomy breast reconstruction: current techniques. Cancer Control. 2001;8:419–26.

    Article  PubMed  CAS  Google Scholar 

  3. Zhong T, Hu J, Bagher S, Vo A, OʼNeill AC, Butler K, Novak CB, Hofer SO, Metcalfe KA. A comparison of psychological response, body image, sexuality, and quality of life between immediate and delayed autologous tissue breast reconstruction: a prospective long-term outcome study. Plast Reconstr Surg. 2016;138:772–80.

    Article  PubMed  CAS  Google Scholar 

  4. Duraes EF, Durand P, Duraes LC, Orra S, Moreira-Gonzalez A, Sousa JB, Djohan RS, Zins J, Bernard S, Schwarz GS. Comparison of preoperative quality of life in breast reconstruction, breast aesthetic and non-breast plastic surgery patients: a cross-sectional study. J Plast Reconstr Aesthet Surg. 2016;69(11):1478–85.

    Article  PubMed  Google Scholar 

  5. Ng SK, Hare RM, Kuang RJ, Smith KM, Brown BJ, Hunter-Smith DJ. Breast reconstruction post mastectomy: patient satisfaction and decision making. Ann Plast Surg. 2016;76(6):640–4.

    Article  PubMed  CAS  Google Scholar 

  6. Didier F, Arnaboldi P, Gandini S, Maldifassi A, Goldhirsch A, Radice D, Minotti I, Ballardini B, Luini A, Santillo B, Rietjens M, Petit JY. Why do women accept to undergo a nipple sparing mastectomy or to reconstruct the nipple areola complex when nipple sparing mastectomy is not possible? Breast Cancer Res Treat. 2012;132:1177–84.

    Article  PubMed  CAS  Google Scholar 

  7. Peled AW, Wang F, Foster RD, Alvarado M, Ewing CA, Sbitany H, Esserman LJ. Expanding the indications for total skin-sparing mastectomy: is it safe for patients with locally advanced disease? Ann Surg Oncol. 2016;23:87–91.

    Article  PubMed  Google Scholar 

  8. Sisco M, Kyrillos AM, Lapin BR, Wang CE, Yao KA. Trends and variation in the use of nipple-sparing mastectomy for breast cancer in the United States. Breast Cancer Res Treat. 2016;160:111–20.

    Article  PubMed  Google Scholar 

  9. Amanti C, Vitale V, Lombardi A, Maggi S, Bersigotti L, Lazzarin G, Nuccetelli E, Romano C, Campanella L, Cristiano L, Bartoloni A, Argento G. Importance of perforating vessels in nipple-sparing mastectomy: an anatomical description. Breast Cancer. 2015;7:179–81.

    PubMed  PubMed Central  Google Scholar 

  10. Shimo A, Tsugawa K, Tsuchiya S, Yoshie R, Tsuchiya K, Uejima T, Kojima Y, Shimo A, Hayami R, Nishikawa T, Yabuki Y, Kawamoto H, Sudo A, Fukuda M, Kanemaki Y, Maeda I. Oncologic outcomes and technical considerations of nipple-sparing mastectomies in breast cancer: experience of 425 cases from a single institution. Breast Cancer. 2015;23(6):851–60.

    Article  PubMed  Google Scholar 

  11. De La Cruz L, Moody AM, Tappy EE, Blankenship SA, Hecht EM. Overall survival, disease-free survival, local recurrence, and nipple-areolar recurrence in the setting of nipple-sparing mastectomy: a meta-analysis and systematic review. Ann Surg Oncol. 2015;22:3241–9.

    Article  Google Scholar 

  12. Ou KW, Yu JC, Ho MH, Chiu WK, Ou KL, Chen TM, Chen SG. Oncological safety and outcomes of nipple-sparing mastectomy with breast reconstruction: a single-centered experience in Taiwan. Ann Plast Surg. 2015;74(Suppl 2):S127–31.

    Article  PubMed  CAS  Google Scholar 

  13. Adam H, Bygdeson M, de Boniface J. The oncological safety of nipple-sparing mastectomy–a Swedish matched cohort study. Eur J Surg Oncol. 2014;40:1209–15.

    Article  PubMed  CAS  Google Scholar 

  14. van Verschuer VM, Mureau MA, Gopie JP, Vos EL, Verhoef C, Menke-Pluijmers MB, Koppert LB. Patient satisfaction and nipple-areola sensitivity after bilateral prophylactic mastectomy and immediate implant breast reconstruction in a high breast cancer risk population: nipple-sparing mastectomy versus skin-sparing mastectomy. Ann Plast Surg. 2016;77:145–52.

    Google Scholar 

  15. Krajewski AC, Boughey JC, Degnim AC, Jakub JW, Jacobson SR, Hoskin TL, Hieken TJ. Expanded indications and improved outcomes for nipple-sparing mastectomy over time. Ann Surg Oncol. 2015;22:3317–23.

    Article  PubMed  Google Scholar 

  16. Cho JW, Yoon ES, You HJ, Kim HS, Lee BI, Park SH. Nipple-areola complex necrosis after nipple-sparing mastectomy with immediate autologous breast reconstruction. Arch Plast Surg. 2015;42:601–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bingol UA, Cinar C. Skin necrosis in a patient with factor v leiden mutation following nipple sparing mastectomy. Plast Reconstr Surg Glob Open. 2015;3:e529.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sisti A, Grimaldi L, Tassinari J, Cuomo R, Fortezza L, Bocchiotti MA, Roviello F, D’Aniello C, Nisi G. Nipple-areola complex reconstruction techniques: a literature review. Eur J Surg Oncol. 2016;42:441–65.

    Article  PubMed  CAS  Google Scholar 

  19. Losken A, Duggal CS, Desai KA, McCullough MC, Gruszynski M, Carlson GW. Time to completion of nipple reconstruction: what factors are involved? Ann Plast Surg. 2013;70:530–2.

    Article  CAS  PubMed  Google Scholar 

  20. Wellisch DK, Schain WS, Noon RB, Little JW III. The psychological contribution of nipple addition in breast reconstruction. Plast Reconstr Surg. 1987;80:699–704.

    Article  CAS  PubMed  Google Scholar 

  21. Delay E, Mojallal A, Vasseur C, Delaporte T. Immediate nipple reconstruction during immediate autologous latissimus breast reconstruction. Plast Reconstr Surg. 2006;118:1303–12.

    Article  CAS  PubMed  Google Scholar 

  22. Chattopadhyay D, Gupta S, Jash PK, Murmu MB, Gupta S. Skin sparing mastectomy with preservation of nipple areola complex and immediate breast reconstruction in patients with breast cancer: a single centre prospective study. Plast Surg Int. 2014;2014:589068.

    PubMed  PubMed Central  Google Scholar 

  23. Momoh AO, Colakoglu S, de Blacam C, Yueh JH, Lin SJ, Tobias AM, Lee BT. The impact of nipple reconstruction on patient satisfaction in breast reconstruction. Ann Plast Surg. 2012;69:389–93.

    Article  CAS  PubMed  Google Scholar 

  24. Nimboriboonporn A, Chuthapisith S. Nipple-areola complex reconstruction. Gland Surg. 2014;3:35–42.

    PubMed  PubMed Central  Google Scholar 

  25. Jabor MA, Shayani P, Collins DR Jr, Karas T, Cohen BE. Nipple-areola reconstruction: satisfaction and clinical determinants. Plast Reconstr Surg. 2002;110:457–63.

    Article  PubMed  Google Scholar 

  26. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85.

    Article  PubMed  CAS  Google Scholar 

  27. Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med. 2012;4:160rv112.

    Article  CAS  Google Scholar 

  28. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367:1241–6.

    Article  PubMed  Google Scholar 

  29. Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, Atala A. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet. 2011;377:1175–82.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Raya-Rivera AM, Esquiliano D, Fierro-Pastrana R, López-Bayghen E, Valencia P, Ordorica-Flores R, Soker S, Yoo JJ, Atala A. Tissue-engineered autologous vaginal organs in patients: a pilot cohort study. Lancet. 2014;384:329–36.

    Article  PubMed  Google Scholar 

  31. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev. Biomed Eng. 2012;40:363–408.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bichara DA, O’Sullivan NA, Pomerantseva I, Zhao X, Sundback CA, Vacanti JP, Randolph MA. The tissue-engineered auricle: past, present, and future. Tissue Eng Part B Rev. 2012;18:51–61.

    Article  PubMed  CAS  Google Scholar 

  33. Ostrovidov S, Hosseini V, Ahadian S, Fujie T, Parthiban SP, Ramalingam M, Bae H, Kaji H, Khademhosseini A. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. Tissue Eng Part B Rev. 2014;20:403–36.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee YB, Polio S, Lee W, Dai G, Menon L, Carroll RS, Yoo SS. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol. 2010;223:645–52.

    Article  PubMed  CAS  Google Scholar 

  35. Jain RK, Au P, Tam J, Duda DG, Fukumura D. Engineering vascularized tissue. Nat Biotechnol. 2005;23:821–3.

    Article  PubMed  CAS  Google Scholar 

  36. Mikos AG, Herring SW, Ochareon P, Elisseeff J, Lu HH, Kandel R, Schoen FJ, Toner M, Mooney D, Atala A, Van Dyke ME, Kaplan D, Vunjak-Novakovic G. Engineering complex tissues. Tissue Eng. 2006;12:3307–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K, Park JK, Yoo SS. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials. 2009;30:1587–95.

    Article  PubMed  CAS  Google Scholar 

  38. Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnol J. 2006;1:910–7.

    Article  PubMed  CAS  Google Scholar 

  39. Dahms SE, Piechota HJ, Dahiya R, Lue TF, Tanagho EA. Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human. Br J Urol. 1998;82:411–9.

    Article  PubMed  CAS  Google Scholar 

  40. Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology. 1999;54:407–10.

    Article  PubMed  CAS  Google Scholar 

  41. Probst M, Dahiya R, Carrier S, Tanagho EA. Reproduction of functional smooth muscle tissue and partial bladder replacement. Br J Urol. 1997;79:505–15.

    Article  PubMed  CAS  Google Scholar 

  42. Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 2009;30:1482–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Moroni L, de Wijn JR, van Blitterswijk CA. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials. 2006;27:974–85.

    Article  PubMed  CAS  Google Scholar 

  44. Kretlow JD, Mikos AG. Founder’s award to Antonios G. Mikos, ph.D., 2011 society for biomaterials annual meeting and exposition, Orlando, Florida, April 13–16, 2011: bones to biomaterials and back again–20 years of taking cues from nature to engineer synthetic polymer scaffolds. J Biomed Mater Res A. 2011;98:323–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tan JY, Chua CK, Leong KF. Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect rapid prototyping technique. Biomed Microdevices. 2013;15:83–96.

    Article  PubMed  CAS  Google Scholar 

  46. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  PubMed  CAS  Google Scholar 

  47. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4:518–24.

    Article  PubMed  CAS  Google Scholar 

  48. Derby B. Printing and prototyping of tissues and scaffolds. Science. 2012;338:921–6.

    Article  PubMed  CAS  Google Scholar 

  49. Cabodi M, Choi NW, Gleghorn JP, Lee CS, Bonassar LJ, Stroock AD. A microfluidic biomaterial. J Am Chem Soc. 2005;127:13788–9.

    Article  PubMed  CAS  Google Scholar 

  50. Ling Y, Rubin J, Deng Y, Huang C, Demirci U, Karp JM, Khademhosseini A. A cell-laden microfluidic hydrogel. Lab Chip. 2007;7:756–62.

    Article  PubMed  CAS  Google Scholar 

  51. Stachowiak AN, Bershteyn A, Tzatzalos E, Irvine DJ. Bioactive hydrogels with an ordered cellular structure combine interconnected macroporosity and robust mechanical properties. Adv Mater. 2005;17:399–403.

    Article  CAS  Google Scholar 

  52. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. Biomaterials. 2009;30:2164–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Jones N. Science in three dimensions: the print revolution. Nature. 2012;487:22–3.

    Article  PubMed  CAS  Google Scholar 

  54. Ferris CJ, Gilmore KG, Wallace GG, In het Panhuis M. Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol. 2013;97:4243–58.

    Article  PubMed  CAS  Google Scholar 

  55. Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013;34:130–9.

    Article  PubMed  CAS  Google Scholar 

  56. Durmus NG, Tasoglu S, Demirci U. Bioprinting: functional droplet networks. Nat Mater. 2013;12:478–9.

    Article  PubMed  CAS  Google Scholar 

  57. Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT, Hunter-Smith DJ. Emerging applications of bedside 3D printing in plastic surgery. Front Surg. 2015;2:25.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chae MP, Hunter-Smith DJ, Rozen WM. Image-guided 3D-printing and haptic modeling in plastic surgery. In: Saba L, Rozen WM, Alonso-Burgos A, Ribuffo D, editors. Imaging in plastic surgery. London, UK: CRC Taylor and Francis Press; 2014.

    Google Scholar 

  59. Gerstle TL, Ibrahim AM, Kim PS, Lee BT, Lin SJ. A plastic surgery application in evolution: three-dimensional printing. Plast Reconstr Surg. 2014;133:446–51.

    Article  PubMed  CAS  Google Scholar 

  60. Goiato MC, Santos MR, Pesqueira AA, Moreno A, dos Santos DM, Haddad MF. Prototyping for surgical and prosthetic treatment. J Craniofac Surg. 2011;22:914–7.

    Article  PubMed  Google Scholar 

  61. Levy GN, Schindel R, Kruth JP. Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann-Manuf Techn. 2003;52:589–609.

    Article  Google Scholar 

  62. Sealy W. Additive manufacturing as a disruptive technology: how to avoid the pitfall. Am J Eng Technol Res. 2011;11:86–93.

    Google Scholar 

  63. Hoy MB. 3D printing: making things at the library. Med Ref Serv Q. 2013;32:93–9.

    Article  Google Scholar 

  64. Klein GT, Lu Y, Wang MY. 3D printing and neurosurgery--ready for prime time? World Neurosurg. 2013;80:233–5.

    Article  PubMed  Google Scholar 

  65. Crump SS. Apparatus and method for creating three-dimensional objects. 1992; US Patent No. 5,121,329: June 9.

    Google Scholar 

  66. Peltola SM, Melchels FP, Grijpma DW, Kellomaki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med. 2008;40:268–80.

    Article  PubMed  CAS  Google Scholar 

  67. Fong EL, Watson BM, Kasper FK, Mikos AG. Building bridges: leveraging interdisciplinary collaborations in the development of biomaterials to meet clinical needs. Adv Mater. 2012;24:4995–5013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lu L, Zhu X, Valenzuela RG, Currier BL, Yaszemski MJ. Biodegradable polymer scaffolds for cartilage tissue engineering. Clin Orthop Relat Res. 2001;(391 Suppl):S251–70.

    Article  Google Scholar 

  69. Butler DL, Goldstein SA, Guldberg RE, Guo XE, Kamm R, Laurencin CT, McIntire LV, Mow VC, Nerem RM, Sah RL, Soslowsky LJ, Spilker RL, Tranquillo RT. The impact of biomechanics in tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2009;15:477–84.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Silva NA, Cooke MJ, Tam RY, Sousa N, Salgado AJ, Reis RL, Shoichet MS. The effects of peptide modified gellan gum and olfactory ensheathing glia cells on neural stem/progenitor cell fate. Biomaterials. 2012;33:6345–54.

    Article  PubMed  CAS  Google Scholar 

  71. Vidal G, Blanchi T, Mieszawska AJ, Calabrese R, Rossi C, Vigneron P, Duval JL, Kaplan DL, Egles C. Enhanced cellular adhesion on titanium by silk functionalized with titanium binding and RGD peptides. Acta Biomater. 2013;9:4935–43.

    Article  PubMed  CAS  Google Scholar 

  72. Engelhardt EM, Micol LA, Houis S, Wurm FM, Hilborn J, Hubbell JA, Frey P. A collagen-poly(lactic acid-co-varepsilon-caprolactone) hybrid scaffold for bladder tissue regeneration. Biomaterials. 2011;32:3969–76.

    Article  PubMed  CAS  Google Scholar 

  73. Phipps MC, Xu Y, Bellis SL. Delivery of platelet-derived growth factor as a chemotactic factor for mesenchymal stem cells by bone-mimetic electrospun scaffolds. PLoS One. 2012;7:e40831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Serrano MC, Pagan R, Vallet-Regi M, Peña J, Rámila A, Izquierdo I, Portolés MT. In vitro biocompatibility assessment of poly(epsilon-caprolactone) films using L929 mouse fibroblasts. Biomaterials. 2004;25:5603–11.

    Article  PubMed  CAS  Google Scholar 

  75. Sun H, Mei L, Song C, Cui X, Wang P. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials. 2006;27:1735–40.

    Article  PubMed  CAS  Google Scholar 

  76. Chang CC, Boland ED, Williams SK, Hoying JB. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomater. 2011;98:160–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Lippens E, Swennen I, Girones J, Declercq H, Vertenten G, Vlaminck L, Gasthuys F, Schacht E, Cornelissen R. Cell survival and proliferation after encapsulation in a chemically modified Pluronic(R) F127 hydrogel. J Biomater Appl. 2013;27:828–39.

    Article  PubMed  CAS  Google Scholar 

  78. Schuurman W, Khristov V, Pot MW, van Weere PR, Dhert WJ, Malda J. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication. 2011;3:021001.

    Article  PubMed  CAS  Google Scholar 

  79. Shim JH, Lee JS, Kim JY, Cho DW. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng. 2012;22:085014.

    Article  CAS  Google Scholar 

  80. Fedorovich NE, De Wijn JR, Verbout AJ, Alblas J, Dhert WJ. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng Part A. 2008;14:127–33.

    Article  PubMed  CAS  Google Scholar 

  81. Jakab K, Neagu A, Mironov V, Markwald RR, Forgacs G. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc Natl Acad Sci U S A. 2004;101:2864–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Landers R, Hubner U, Schmelzeisen R, Mulhaupt R. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials. 2002;23:4437–47.

    Article  PubMed  CAS  Google Scholar 

  83. Joddar B, Garcia E, Casas A, Stewart CM. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies. Sci Rep. 2016;6:32456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34:312–9.

    Article  PubMed  CAS  Google Scholar 

  85. Brivanlou AH, Gage FH, Jaenisch R, Jessell T, Melton D, Rossant J. Stem cells. Setting standards for human embryonic stem cells. Science. 2003;300:913–6.

    Article  PubMed  CAS  Google Scholar 

  86. Condic ML, Rao M. Regulatory issues for personalized pluripotent cells. Stem Cells. 2008;26:2753–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Hochedlinger K, Jaenisch R. Nuclear transplantation, embryonic stem cells, and the potential for cell therapy. N Engl J Med. 2003;349:275–86.

    Article  PubMed  CAS  Google Scholar 

  88. Bae H, Puranik AS, Gauvin R, Edalat F, Carrillo-Conde B, Peppas NA, Khademhosseini A. Building vascular networks. Sci Transl Med. 2012;4:160ps123.

    Article  CAS  Google Scholar 

  89. Lovett M, Lee K, Edwards A, Kaplan DL. Vascularization strategies for tissue engineering. Tissue Eng Part B Rev. 2009;15:353–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Cilento BG, Freeman MR, Schneck FX, Retik AB, Atala A. Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro. J Urol. 1994;152:665–70.

    Article  PubMed  CAS  Google Scholar 

  91. Zhang YY, Ludwikowski B, Hurst R, Frey P. Expansion and long-term culture of differentiated normal rat urothelial cells in vitro. In Vitro Cell Dev Biol Anim. 2001;37:419–29.

    Article  PubMed  CAS  Google Scholar 

  92. Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9:11–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Lam MT, Longaker MT. Comparison of several attachment methods for human iPS, embryonic and adipose-derived stem cells for tissue engineering. J Tissue Eng Regen Med. 2012;6(Suppl 3):s80–6.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Klebe RJ. Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res. 1988;179:362–73.

    Article  PubMed  CAS  Google Scholar 

  95. Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26:93–9.

    Article  PubMed  CAS  Google Scholar 

  96. Cui X, Boland T, D'Lima DD, Lotz MK. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Form. 2012;6:149–55.

    Article  CAS  Google Scholar 

  97. Cohen DL, Malone E, Lipson H, Bonassar LJ. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng. 2006;12:1325–35.

    Article  PubMed  CAS  Google Scholar 

  98. Iwami K, Noda T, Ishida K, Morishima K, Nakamura M, Umeda N. Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel. Biofabrication. 2010;2:014108.

    Article  PubMed  CAS  Google Scholar 

  99. Shor L, Guceri S, Chang R, Gordon J, Kang Q, Hartsock L, An Y, Sun W. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication. 2009;1:015003.

    Article  PubMed  CAS  Google Scholar 

  100. Barron JA, Wu P, Ladouceur HD, Ringeisen BR. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices. 2004;6:139–47.

    Article  PubMed  CAS  Google Scholar 

  101. Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M, Pippenger B, Bareille R, Rémy M, Bellance S, Chabassier P, Fricain JC, Amédée J. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 2010;6:2494–500.

    Article  PubMed  CAS  Google Scholar 

  102. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, Bareille R, Rémy M, Bordenave L, Amédée J, Guillemot F. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31:7250–6.

    Article  PubMed  CAS  Google Scholar 

  103. Okamoto T, Suzuki T, Yamamoto N. Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol. 2000;18:438–41.

    Article  PubMed  CAS  Google Scholar 

  104. Goldmann T, Gonzalez JS. DNA-printing: utilization of a standard inkjet printer for the transfer of nucleic acids to solid supports. J Biochem Biophys Methods. 2000;42:105–10.

    Article  PubMed  CAS  Google Scholar 

  105. Xu T, Kincaid H, Atala A, Yoo JJ. High-throughput production of single-cell microparticles using an inkjet printing technology. J Manuf Sci Eng. 2008;130:021017.

    Article  Google Scholar 

  106. Cui X, Dean D, Ruggeri ZM, Boland T. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng. 2010;106:963–9.

    Article  PubMed  CAS  Google Scholar 

  107. Tekin E, Smith PJ, Schubert US. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter. 2008;4:703–13.

    Article  CAS  PubMed  Google Scholar 

  108. Tasoglu S, Demirci U. Bioprinting for stem cell research. Trends Biotechnol. 2013;31:10–9.

    Article  PubMed  CAS  Google Scholar 

  109. Murphy SV, Skardal A, Atala A. Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res A. 2013;101:272–84.

    Article  PubMed  CAS  Google Scholar 

  110. Khalil S, Sun W. Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Mater Sci Eng C. 2007;27:469–78.

    Article  CAS  Google Scholar 

  111. Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, Soker S. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 2012;1:792–802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012;18:1304–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25:100–6.

    Article  PubMed  CAS  Google Scholar 

  114. Fedorovich NE, Swennen I, Girones J, Moroni L, van Blitterswijk CA, Schacht E, Alblas J, Dhert WJ. Evaluation of photocrosslinked Lutrol hydrogel for tissue printing applications. Biomacromolecules. 2009;10:1689–96.

    Article  PubMed  CAS  Google Scholar 

  115. Chang R, Nam J, Sun W. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng Part A. 2008;14:41–8.

    Article  PubMed  CAS  Google Scholar 

  116. Jakab K, Damon B, Neagu A, Kachurin A, Forgacs G. Three-dimensional tissue constructs built by bioprinting. Biorheology. 2006;43:509–13.

    PubMed  Google Scholar 

  117. Visser J, Peters B, Burger TJ, Boomstra J, Dhert WJ, Melchels FP, Malda J. Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication. 2013;5:035007.

    Article  PubMed  CAS  Google Scholar 

  118. Marga F, Jakab K, Khatiwala C, Shepherd B, Dorfman S, Hubbard B, Colbert S, Gabor F. Toward engineering functional organ modules by additive manufacturing. Biofabrication. 2012;4:022001.

    Article  PubMed  Google Scholar 

  119. Mironov V, Kasyanov V, Markwald RR. Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol. 2011;22:667–73.

    Article  PubMed  CAS  Google Scholar 

  120. Smith CM, Stone AL, Parkhill RL, Stewart RL, Simpkins MW, Kachurin AM, Warren WL, Williams SK. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng. 2004;10:1566–76.

    Article  PubMed  CAS  Google Scholar 

  121. Duan B, Hockaday LA, Kang KH, Butcher JT III. Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2013;101:1255–64.

    Article  PubMed  CAS  Google Scholar 

  122. Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30:5910–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Xu F, Celli J, Rizvi I, Moon S, Hasan T, Demirci U. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J. 2011;6:204–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Bohandy J, Kim B, Adrian F. Metal deposition from a supported metal film using an excimer laser. J Appl Phys. 1986;60:1538–9.

    Article  CAS  Google Scholar 

  125. Barron JA, Ringeisen BR, Kim H, Spargo BJ, Chrisey DB. Application of laser printing to mammalian cells. Thin Solid Films. 2004;453:383–7.

    Article  CAS  Google Scholar 

  126. Ringeisen BR, Kim H, Barron JA, Krizman DB, Chrisey DB, Jackman S, Auyeung RY, Spargo BJ. Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng. 2004;10:483–91.

    Article  PubMed  CAS  Google Scholar 

  127. Chrisey DB. Materials processing: the power of direct writing. Science. 2000;289:879–81.

    Article  PubMed  CAS  Google Scholar 

  128. Colina M, Serra P, Fernandez-Pradas JM, Sevilla L, Morenza JL. DNA deposition through laser induced forward transfer. Biosens Bioelectron. 2005;20:1638–42.

    Article  PubMed  CAS  Google Scholar 

  129. Hopp B, Smausz T, Kresz N, Barna N, Bor Z, Kolozsvári L, Chrisey DB, Szabó A, Nógrádi A. Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng. 2005;11:1817–23.

    Article  PubMed  CAS  Google Scholar 

  130. Gruene M, Deiwick A, Koch L, Schlie S, Unger C, Hofmann N, Bernemann I, Glasmacher B, Chichkov B. Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods. 2011;17:79–87.

    Article  PubMed  Google Scholar 

  131. Koch L, Kuhn S, Sorg H, Gruene M, Schlie S, Gaebel R, Polchow B, Reimers K, Stoelting S, Ma N, Vogt PM, Steinhoff G, Chichkov B. Laser printing of skin cells and human stem cells. Tissue Eng Part C Methods. 2010;16:847–54.

    Article  PubMed  CAS  Google Scholar 

  132. Guillotin B, Guillemot F. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 2011;29:183–90.

    Article  PubMed  CAS  Google Scholar 

  133. Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, Vogt PM, Reimers K. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One. 2013;8:e57741.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Keriquel V, Guillemot F, Arnault I, Guillotin B, Miraux S, Amédée J, Fricain JC, Catros S. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication. 2010;2:014101.

    Article  PubMed  CAS  Google Scholar 

  135. O’Connor NE, Mulliken JB, Banks-Schlegel S, Kehinde O, Green H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet. 1981;1:75–8.

    Article  Google Scholar 

  136. Gerlach JC, Johnen C, Ottomann C, Bräutigam K, Plettig J, Belfekroun C, Münch S, Hartmann BV. Method for autologous single skin cell isolation for regenerative cell spray transplantation with non-cultured cells. Int J Artif Organs. 2011;34:271–9.

    Article  PubMed  Google Scholar 

  137. Wood FM, Giles N, Stevenson A, Rea S, Fear M. Characterisation of the cell suspension harvested from the dermal epidermal junction using a ReCell(R) kit. Burns. 2012;38:44–51.

    Article  PubMed  Google Scholar 

  138. Carsin H, Ainaud P, Le Bever H, et al. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients. Burns. 2000;26:379–87.

    Article  PubMed  CAS  Google Scholar 

  139. Centanni JM, Straseski JA, Wicks A, Hank JA, Rasmussen CA, Lokuta MA, Schurr MJ, Foster KN, Faucher LD, Caruso DM, Comer AR, Allen-Hoffmann BL. StrataGraft skin substitute is well-tolerated and is not acutely immunogenic in patients with traumatic wounds: results from a prospective, randomized, controlled dose escalation trial. Ann Surg. 2011;253:672–83.

    Article  PubMed  Google Scholar 

  140. Bottcher-Haberzeth S, Biedermann T, Reichmann E. Tissue engineering of skin. Burns. 2010;36:450–60.

    Article  PubMed  Google Scholar 

  141. Langer A, Rogowski W. Systematic review of economic evaluations of human cell-derived wound care products for the treatment of venous leg and diabetic foot ulcers. BMC Health Serv Res. 2009;9:115.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Fagerholm P, Lagali NS, Merrett K, Jackson WB, Munger R, Liu Y, Polarek JW, Söderqvist M, Griffith M. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med. 2010;2:46ra61.

    Article  PubMed  CAS  Google Scholar 

  143. Fagerholm P, Lagali NS, Carlsson DJ, Merrett K, Griffith M. Corneal regeneration following implantation of a biomimetic tissue-engineered substitute. Clin Transl Sci. 2009;2:162–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Palmer DA, Marcello PW, Zinman LN, Vanni AJ. Urethral reconstruction with rectal mucosa graft onlay: a novel, minimally invasive technique. J Urol. 2016;196:782–6.

    Article  PubMed  Google Scholar 

  145. Lv X, Xu YM, Xie H, Feng C, Zhang J. The selection of procedures in one-stage urethroplasty for treatment of coexisting urethral strictures in anterior and posterior urethra. Urology. 2016;93:197–202.

    Article  PubMed  Google Scholar 

  146. Bayramicli M, Akdeniz ZD. Urethra reconstruction with lateral pectoral flap in female-to-male transsexual patients. J Plast Reconstr Aesthet Surg. 2016;69(11):1558–60.

    Article  PubMed  Google Scholar 

  147. Shin’oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N Engl J Med. 2001;344:532–3.

    Article  PubMed  Google Scholar 

  148. L’Heureux N, McAllister TN, de la Fuente LM. Tissue-engineered blood vessel for adult arterial revascularization. N Engl J Med. 2007;357:1451–3.

    Article  PubMed  Google Scholar 

  149. Dahl SL, Kypson AP, Lawson JH, et al. Readily available tissue-engineered vascular grafts. Sci Transl Med. 2011;3:68ra69.

    Article  CAS  Google Scholar 

  150. Scriven SD, Booth C, Thomas DF, Trejdosiewicz LK, Southgate J. Reconstitution of human urothelium from monolayer cultures. J Urol. 1997;158:1147–52.

    Article  PubMed  CAS  Google Scholar 

  151. Soler R, Fullhase C, Atala A. Regenerative medicine strategies for treatment of neurogenic bladder. Therapy. 2009;6:177–84.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Oberpenning F, Meng J, Yoo JJ, Atala A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol. 1999;17:149–55.

    Article  PubMed  CAS  Google Scholar 

  153. De Filippo RE, Bishop CE, Filho LF, Yoo JJ, Atala A. Tissue engineering a complete vaginal replacement from a small biopsy of autologous tissue. Transplantation. 2008;86:208–14.

    Article  PubMed  Google Scholar 

  154. Pashuck ET, Stevens MM. Designing regenerative biomaterial therapies for the clinic. Sci Transl Med. 2012;4:160sr164.

    Article  CAS  Google Scholar 

  155. Cuomo AV, Virk M, Petrigliano F, Morgan EF, Lieberman JR. Mesenchymal stem cell concentration and bone repair: potential pitfalls from bench to bedside. J Bone Joint Surg Am. 2009;91:1073–83.

    Article  PubMed  Google Scholar 

  156. Lokmic Z, Thomas JL, Morrison WA, Thompson EW, Mitchell GM. An endogenously deposited fibrin scaffold determines construct size in the surgically created arteriovenous loop chamber model of tissue engineering. J Vasc Surg. 2008;48:974–85.

    Article  PubMed  Google Scholar 

  157. Findlay MW, Dolderer JH, Trost N, Craft RO, Cao Y, Cooper-White J, Stevens G, Morrison WA. Tissue-engineered breast reconstruction: bridging the gap toward large-volume tissue engineering in humans. Plast Reconstr Surg. 2011;128:1206–15.

    Article  PubMed  CAS  Google Scholar 

  158. Lin SD, Wang KH, Kao AP. Engineered adipose tissue of predefined shape and dimensions from human adipose-derived mesenchymal stem cells. Tissue Eng Part A. 2008;14:571–81.

    Article  PubMed  CAS  Google Scholar 

  159. Chhaya MP, Melchels FP, Holzapfel BM, Baldwin JG, Hutmacher DW. Sustained regeneration of high-volume adipose tissue for breast reconstruction using computer aided design and biomanufacturing. Biomaterials. 2015;52:551–60.

    Article  PubMed  CAS  Google Scholar 

  160. Reichert JC, Cipitria A, Epari DR, Saifzadeh S, Krishnakanth P, Berner A, Woodruff MA, Schell H, Mehta M, Schuetz MA, Duda GN, Hutmacher DW. A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci Transl Med. 2012;4:141ra193.

    Article  CAS  Google Scholar 

  161. Rohner D, Hutmacher DW, Cheng TK, Oberholzer M, Hammer B. In vivo efficacy of bone-marrow-coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig. J Biomed Mater Res B Appl Biomater. 2003;66:574–80.

    Article  PubMed  CAS  Google Scholar 

  162. Schantz JT, Lim TC, Ning C, et al. Cranioplasty after trephination using a novel biodegradable burr hole cover: technical case report. Neurosurgery. 2006;58:ONS-E176.

    Google Scholar 

  163. Rai B, Oest ME, Dupont KM, Ho KH, Teoh SH, Guldberg RE. Combination of platelet-rich plasma with polycaprolactone-tricalcium phosphate scaffolds for segmental bone defect repair. J Biomed Mater Res A. 2007;81:888–99.

    Article  PubMed  CAS  Google Scholar 

  164. Stevens MM, Marini RP, Schaefer D, Aronson J, Langer R, Shastri VP. In vivo engineering of organs: the bone bioreactor. Proc Natl Acad Sci U S A. 2005;102:11450–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Lanza RP, Chung HY, Yoo JJ, Wettstein PJ, Blackwell C, Borson N, Hofmeister E, Schuch G, Soker S, Moraes CT, West MD, Atala A. Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol. 2002;20:689–96.

    Article  PubMed  CAS  Google Scholar 

  166. Orlando G, Farney AC, Iskandar S, Mirmalek-Sani SH, Sullivan DC, Moran E, AbouShwareb T, De Coppi P, Wood KJ, Stratta RJ, Atala A, Yoo JJ, Soker S. Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal bioengineering investigations. Ann Surg. 2012;256:363–70.

    Article  PubMed  Google Scholar 

  167. Chen KL, Eberli D, Yoo JJ, Atala A. Bioengineered corporal tissue for structural and functional restoration of the penis. Proc Natl Acad Sci U S A. 2010;107:3346–50.

    Article  PubMed  Google Scholar 

  168. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.

    Article  PubMed  CAS  Google Scholar 

  169. Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atal A, Soker S. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 2011;53:604–17.

    Article  PubMed  CAS  Google Scholar 

  170. De Carlo E, Baiguera S, Conconi MT, Vigolo S, Grandi C, Lora S, Martini C, Maffei P, Tamagno G, Vettor R, Sicolo N, Parnigotto PP. Pancreatic acellular matrix supports islet survival and function in a synthetic tubular device: in vitro and in vivo studies. Int J Mol Med. 2010;25:195–202.

    PubMed  Google Scholar 

  171. Fedorovich NE, Schuurman W, Wijnberg HM, Prins HJ, van Weeren PR, Malda J, Alblas J, Dhert WJ. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods. 2012;18:33–44.

    Article  PubMed  CAS  Google Scholar 

  172. Xu T, Olson J, Zhao WX, Atala A, Zhu JM, Yoo JJ. Characterization of cell constructs generated with inkjet printing technology using in vivo magnetic resonance imaging. J Manuf Sci Eng Trans ASME. 2008;130:021013.

    Article  Google Scholar 

  173. Zhao W, Xu T, Aboushwareb T, Atala A, Yoo J. In vivo generation of functional tissues using the inkjet printing technology for reconstructive surgery. J Am Coll Surg. 2010;211:S87.

    Article  Google Scholar 

  174. Warnke PH, Springer IN, Wiltfang J, Acil Y, Eufinger H, Wehmöller M, Russo PA, Bolte H, Sherry E, Behrens E, Terheyden H. Growth and transplantation of a custom vascularised bone graft in a man. Lancet. 2004;364:766–70.

    Article  PubMed  CAS  Google Scholar 

  175. Warnke PH, Wiltfang J, Springer I, Acil Y, Bolte H, Kosmahl M, Russo PA, Sherry E, Lützen U, Wolfart S, Terheyden H. Man as living bioreactor: fate of an exogenously prepared customized tissue-engineered mandible. Biomaterials. 2006;27:3163–7.

    Article  PubMed  CAS  Google Scholar 

  176. Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev. 2007;59:207–33.

    Article  PubMed  CAS  Google Scholar 

  177. Berson MI. Construction of pseudoareola. Surgery. 1946;20:808.

    PubMed  CAS  Google Scholar 

  178. Little JW III, Spear SL. The finishing touches in nipple-areolar reconstruction. Perspect Plast Surg. 1988;2:1–22.

    Google Scholar 

  179. Anton LE, Hartrampf CR. Nipple reconstruction with local flaps: star and wrap flaps. Perspect Plast Surg. 1991;5:67–78.

    Google Scholar 

  180. Jones G, Bostwic J. Nipple-areolar reconstruction. Oper Tech Plast Reconstr Surg. 1994;1:35–8.

    Article  Google Scholar 

  181. Mori H, Hata Y. Modified C–V flap in nipple reconstruction. J Plast Reconstr Aesthet Surg. 2008;61:1109–10.

    Article  PubMed  Google Scholar 

  182. Brackley PT, Iqbal A. Enhancing your C-V flap nipple reconstruction. J Plast Reconstr Aesthet Surg. 2009;62:128–30.

    Article  PubMed  Google Scholar 

  183. El-Ali K, Dalal M, Kat CC. Modified C-V flap for nipple reconstruction: our results in 50 patients. J Plast Reconstr Aesthet Surg. 2009;62:991–6.

    Article  PubMed  CAS  Google Scholar 

  184. Witt P, Dujon DG. The V-V flap--a simple modification of the C-V flap for nipple reconstruction. J Plast Reconstr Aesthet Surg. 2013;66:1009–10.

    Article  PubMed  CAS  Google Scholar 

  185. Elizabeth Clark S, Turton E. The CC-V flap: a novel technique for augmenting a C-V nipple reconstruction using a free dermal graft. World J Plast Surg. 2014;3:8–12.

    PubMed  PubMed Central  Google Scholar 

  186. Salgarello M, Cavalcanti P, Barone-Adesi L. Atypical patterns in C-V flap nipple reconstruction: a customisation of the C-V flap. J Plast Reconstr Aesthet Surg. 2014;67:1598–9.

    Article  PubMed  Google Scholar 

  187. Temiz G, Yesiloglu N, Sirinoglu H, Sarici M. A new modification of C-V flap technique in nipple reconstruction: rolled triangular dermal-fat flaps. Aesthet Plast Surg. 2015;39:173–5.

    Article  Google Scholar 

  188. Adams WM. Labial transplant for correction of loss of the nipple. Plast Reconstr Surg. 1949;4:295–8.

    Article  CAS  Google Scholar 

  189. Gruber RP. Nipple-areola reconstruction: a review of techniques. Clin Plast Surg. 1979;6:71–83.

    CAS  PubMed  Google Scholar 

  190. Millard DR Jr. Nipple and areola reconstruction by split-skin graft from the normal side. Plast Reconstr Surg. 1972;50:350–3.

    Article  PubMed  Google Scholar 

  191. Dean NR, Neild T, Haynes J, Goddard C, Cooter RD. Fading of nipple-areolar reconstructions: the last hurdle in breast reconstruction? Br J Plast Surg. 2002;55:574–81.

    Article  PubMed  CAS  Google Scholar 

  192. Haslik W, Nedomansky J, Hacker S, Nickl S, Schroegendorfer KF. Objective and subjective evaluation of donor-site morbidity after nipple sharing for nipple areola reconstruction. J Plast Reconstr Aesthet Surg. 2015;68:168–74.

    Article  PubMed  CAS  Google Scholar 

  193. Collis N, Garrido A. Maintenance of nipple projection using auricular cartilage. Plast Reconstr Surg. 2000;105:2276–7.

    Article  CAS  PubMed  Google Scholar 

  194. Bernard RW, Beran SJ. Autologous fat graft in nipple reconstruction. Plast Reconstr Surg. 2003;112:964–8.

    Article  PubMed  Google Scholar 

  195. Guerra AB, Khoobehi K, Metzinger SE, Allen RJ. New technique for nipple areola reconstruction: arrow flap and rib cartilage graft for long-lasting nipple projection. Ann Plast Surg. 2003;50:31–7.

    Article  PubMed  Google Scholar 

  196. Gamboa-Bobadilla GM. Nipple reconstruction: the top hat technique. Ann Plast Surg. 2005;54:243–6.

    PubMed  CAS  Google Scholar 

  197. Hammond DC, Khuthaila D, Kim J. The skate flap purse-string technique for nipple-areola complex reconstruction. Plast Reconstr Surg. 2007;120:399–406.

    Article  CAS  PubMed  Google Scholar 

  198. Garramone CE, Lam B. Use of AlloDerm in primary nipple reconstruction to improve long-term nipple projection. Plast Reconstr Surg. 2007;119:1663–8.

    Article  CAS  PubMed  Google Scholar 

  199. Zenn MR, Garofalo JA. Unilateral nipple reconstruction with nipple sharing: time for a second look. Plast Reconstr Surg. 2009;123:1648–53.

    Article  PubMed  CAS  Google Scholar 

  200. Wong WW, Hiersche MA, Martin MC. The angel flap for nipple reconstruction. Can J Plast Surg. 2013;21:e1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Grosdidier A, Lebeau J, Ochala C, Payan R, Bettega G. “double flag” flap nipple reconstruction. Clinical evaluation on 70 cases. Ann Chir Plast Esthet. 2014;59:123–9.

    Article  PubMed  CAS  Google Scholar 

  202. Yang JD, Ryu JY, Ryu DW, Kwon OH, Bae SG, Lee JW, Choi KY, Chung HY, Cho BC. Our experiences in nipple reconstruction using the Hammond flap. Arch Plast Surg. 2014;41:550–5.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Halvorson EG, Cormican M, West ME, Myers V. Three-dimensional nipple-areola tattooing: a new technique with superior results. Plast Reconstr Surg. 2014;133:1073–5.

    Article  PubMed  CAS  Google Scholar 

  204. Cheng MH, Ho-Asjoe M, Wei FC, Chuang DC. Nipple reconstruction in Asian females using banked cartilage graft and modified top hat flap. Br J Plast Surg. 2003;56:692–4.

    Article  PubMed  Google Scholar 

  205. Heitland A, Markowicz M, Koellensperger E, Allen R, Pallua N. Long-term nipple shrinkage following augmentation by an autologous rib cartilage transplant in free DIEP-flaps. J Plast Reconstr Aesthet Surg. 2006;59:1063–7.

    Article  PubMed  CAS  Google Scholar 

  206. Cheng MH, Rodriguez ED, Smartt JM, Cardenas-Mejia A. Nipple reconstruction using the modified top hat flap with banked costal cartilage graft: long-term follow-up in 58 patients. Ann Plast Surg. 2007;59:621–8.

    Article  PubMed  CAS  Google Scholar 

  207. Lipa JE, Addison PD, Neligan PC. Patient satisfaction following nipple reconstruction incorporating autologous costal cartilage. Can J Plast Surg. 2008;16:85–8.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Mori H, Uemura N, Okazaki M. Nipple reconstruction with banked costal cartilage after vertical-type skin-sparing mastectomy and deep inferior epigastric artery perforator flap. Breast Cancer. 2015;22:95–7.

    Article  PubMed  Google Scholar 

  209. Brent B, Bostwick J. Nipple-areola reconstruction with auricular tissues. Plast Reconstr Surg. 1977;60:353–61.

    CAS  PubMed  Google Scholar 

  210. Tanabe HY, Tai Y, Kiyokawa K, Yamauchi T. Nipple-areola reconstruction with a dermal-fat flap and rolled auricular cartilage. Plast Reconstr Surg. 1997;100:431–8.

    Article  CAS  PubMed  Google Scholar 

  211. Norton S, Akhavani MA, Kang N. The ‘hamburger’ technique for harvesting cartilage grafts in nipple reconstruction. J Plast Reconstr Aesthet Surg. 2007;60:957–9.

    Article  PubMed  Google Scholar 

  212. Jones AP, Erdmann M. Projection and patient satisfaction using the “hamburger” nipple reconstruction technique. J Plast Reconstr Aesthet Surg. 2012;65:207–12.

    Article  PubMed  CAS  Google Scholar 

  213. Breuing KH, Warren SM. Immediate bilateral breast reconstruction with implants and inferolateral AlloDerm slings. Ann Plast Surg. 2005;55:232–9.

    Article  PubMed  CAS  Google Scholar 

  214. Nahabedian MY. Secondary nipple reconstruction using local flaps and AlloDerm. Plast Reconstr Surg. 2005;115:2056–61.

    Article  CAS  PubMed  Google Scholar 

  215. Wong AK, Schonmeyr B, Singh P, Carlson DL, Li S, Mehrara BJ. Histologic analysis of angiogenesis and lymphangiogenesis in acellular human dermis. Plast Reconstr Surg. 2008;121:1144–52.

    Article  PubMed  CAS  Google Scholar 

  216. Rao SS, Seaman BJ, Davison SP. The acellular dermal matrix onlay graft for areolar reconstruction. Ann Plast Surg. 2014;72:508–12.

    Article  PubMed  CAS  Google Scholar 

  217. Tierney BP, Hodde J, Changkuo DI. Biologic collagen cylinder with skate flap technique for nipple reconstruction. Plast Surg Int. 2014;2014:194087.

    PubMed  PubMed Central  Google Scholar 

  218. Jankau J, Jaskiewicz J, Ankiewicz A. A new method for using a silicone rod for permanent nipple projection after breast reconstruction procedures. Breast. 2011;20:124–8.

    Article  PubMed  Google Scholar 

  219. Jankau J. Use of silicone rod for permanent nipple projection after breast reconstruction procedures. In: Shiffman MA, editor. Breast reconstruction: art, science and new clinical techniques. Berlin: Springer; 2016. p. 987–93.

    Chapter  Google Scholar 

  220. McCarthy CM, VanLaeken N, Lennox P, Scott AM, Pusic AL. The efficacy of Artecoll injections for the augmentation of nipple projection in breast reconstruction. Eplasty. 2010;10:e7.

    PubMed  PubMed Central  Google Scholar 

  221. Yanaga H. Nipple-areola reconstruction with a dermal-fat flap: technical improvement from rolled auricular cartilage to artificial bone. Plast Reconstr Surg. 2003;112:1863–9.

    Article  PubMed  Google Scholar 

  222. Nishiyama T, Nakajima T, Yoshimura Y, Nakanishi Y. Utilizing solid models for preoperative shaping of HAP-TCP ceramic bone substitute: application for craniomaxillofacial surgery. Eur J Plast Surg. 1994;17:173.

    Article  Google Scholar 

  223. Evans KK, Rasko Y, Lenert J, Olding M. The use of calcium hydroxylapatite for nipple projection after failed nipple-areolar reconstruction: early results. Ann Plast Surg. 2005;55:25–9.

    Article  CAS  PubMed  Google Scholar 

  224. Holbrook A, Lee S, Soo MS. Mammographic appearance of calcium hydroxylapatite (RadiesseTM) injected into the breast for nipple reconstruction. Breast J. 2013;19:104–13.

    Article  PubMed  CAS  Google Scholar 

  225. Germano D, De Biasio F, Piedimonte A, Parodi PC. Nipple reconstruction using the fleur-de-lis flap technique. Aesthet Plast Surg. 2006;30:399–402.

    Article  CAS  Google Scholar 

  226. Cronin TD, Upton J, McDonough JM. Reconstruction of the breast after mastectomy. Plast Reconstr Surg. 1977;59:1–14.

    Article  CAS  PubMed  Google Scholar 

  227. Gruber RP. Method to produce better areolae and nipples on reconstructed breasts. Plast Reconstr Surg. 1977;60:505–13.

    Article  PubMed  CAS  Google Scholar 

  228. Cao YL, Lach E, Kim TH, Rodriguez A, Arevalo CA, Vacanti C. A. Tissue-engineered nipple reconstruction. Plast Reconstr Surg. 1998;102:2293–8.

    Article  PubMed  CAS  Google Scholar 

  229. Cerqueira B, Cornell L. NovoThelium LLC. Tissue engineered nipples for breast reconstruction. http://www.novothelium.com. Accessed 23 Oct 2016.

  230. Bosworth L, Collins S, Boland T. TeVido BioDevices. http://tevidobiodevices.com/. Accessed 23 Oct 2016.

  231. Chae MP, Hunter-Smith DJ, Spychal RT, Rozen WM. 3D volumetric analysis for planning breast reconstructive surgery. Breast Cancer Res Treat. 2014;146:457–60.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Chae M.B.B.S., B.Med.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Chae, M.P., Hunter-Smith, D.J., Murphy, S.V., Rozen, W.M. (2018). 3D Bioprinting in Nipple-Areola Complex Reconstruction. In: Shiffman, M. (eds) Nipple-Areolar Complex Reconstruction. Springer, Cham. https://doi.org/10.1007/978-3-319-60925-6_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60925-6_73

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60924-9

  • Online ISBN: 978-3-319-60925-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics