Skip to main content
Book cover

OpenFOAM® pp 121–131Cite as

Drag Model for Coupled CFD-DEM Simulations of Non-spherical Particles

  • Chapter
  • First Online:

Abstract

The production and handling of non-spherical granular products plays an important role in many industries. It is often necessary to consider the real particle shape of the real particles as an essential prerequisite for modeling these processes reliably. This work presents a new approach for approximating the drag coefficient of non-spherical particles during simulation. This is based on the representation of the particle shape as a clump of multiple spheres, as it is often used in the Discrete Element Method (DEM). The paper describes the calculation of the drag coefficient based on the arrangement of the spheres within the clump depending on the Reynolds number and the flow direction. Numerical simulations of the flow around regularly- and irregularly shaped particles, as well as experiments in a wind tunnel, are used as the basis of model development. The new drag model is able to describe the drag coefficient for irregularly shaped particles within a wide range of Reynolds numbers. It has been implemented in the toolbox CFDEM\(^{\textregistered }\) coupling. The new drag model is tested within CFD-DEM simulations of particle behavior in a spouted bed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Haider, A., Levenspiel, O.: Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technology 58, 63–70, (1989)

    Article  Google Scholar 

  2. Loth, E.: Drag of non-spherical solid particles of regular and irregular shape. Powder Technology 182, 342–353, (2008)

    Article  Google Scholar 

  3. Swamee, P., Ojha, C.: Drag Coefficient and Fall Velocity of nonspherical particles. Journal of Hydraulic Engineering 117, 660–667, (1991)

    Article  Google Scholar 

  4. Leith, D.: Drag on Nonspherical Objects. Aerosol Science and Technology 6, 153–161, (1987)

    Article  Google Scholar 

  5. Hölzer, A., Sommerfeld, M.: New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technology 184, 361–365, (2008)

    Article  Google Scholar 

  6. DEM-Solutions, EDEM version 2.7, Edinburgh (2015)

    Google Scholar 

  7. Itasca Consultings GmbH, PFC3D version 4.0, Gelsenkirchen, (2015)

    Google Scholar 

  8. Becker, H.: The Effects of Shape and Reynolds Number on Drag in the Motion of a Freely Oriented Body in an Infinite Fluid. Can. J. Chem. Eng. 37, 85–91, (1959)

    Article  Google Scholar 

  9. Kasper, G., Niida, T., Yang, M.: Measurements of Viscous Drag on Cylinders and Chains of Spheres with Aspect Ratios Between 2 and 50. Journal of Aerosol Science 16, 535–556, (1985)

    Article  Google Scholar 

  10. Pettyjohn, E. S., Christiansen, E. B.: Effect of Particle Shape on Free-Settling Rates of Isometric Particles. Chemical Engineering Progress 44, 157–172, (1948)

    Google Scholar 

  11. Dwyer, H. A., Dandy, D. S.: Some influences of particle shape on drag and heat transfer. Physics of Fluids A: Fluid Dynamics 2, 2110–2118, (1990)

    Article  Google Scholar 

  12. Hölzer, A.: Bestimmung des Widerstandes, Auftriebs und Drehmoments und Simulation der Bewegung nichtsphrischer Partikel in laminaren und turbulenten Strmungen mit dem Lattice-Boltzmann-Verfahren. Martin-Luther-Universitt Halle-Wittenberg, 2007

    Google Scholar 

  13. Zastawny, M., Mallouppas, G., Zhao, F., van Wachem, B.: Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. International Journal of Mineral Processing 39, 227–239, (2012)

    Article  Google Scholar 

  14. Ganser, G. H.: A rational approach to drag prediction of spherical and nonspherical particles. Powder Technology 77, 143–152, (1993)

    Article  Google Scholar 

  15. OpenCFD Ltd. (ESI-Group), OpenFOAM\(^{\textregistered }\) version 2.3, Bracknell, UK (2014)

    Google Scholar 

  16. Morrison, F. A.: Data Correlation for Drag Coefficient for Sphere. Department of Chemical Engineering, Michigan Technological University, Houghton, MI (2013) Available via http://www.chem.mtu.edu/~fmorriso/DataCorrelationForSphereDrag2013.pdf

  17. Schiller, L., Naumann, A.: Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Zeitschrift Verein Deutscher Ingenieure 77, 318–320, (1933)

    Google Scholar 

  18. Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., Gagn, C.: DEAP: Evolutionary Algorithms Made Easy. Journal of Machine Learning Research 13, 2171–2175, (2012)

    MathSciNet  MATH  Google Scholar 

  19. Goniva, C., Kloss, C., Deen, N., Kuipers, J., Pirker, S.: Influence of Rolling Friction Modelling on Single Spout Fluidized Bed Simulations. Particuology 5, 582–591, (2012)

    Article  Google Scholar 

  20. Kafui, K. D., Thornton, C., Adams, M. J: Reply to comments by Feng and Yu on “Discrete particle-continuum fluid modelling of gas-solid fluidised beds” by Kafui et al. Chemical Engineering Science 59, 719–722, (2004)

    Article  Google Scholar 

  21. Zhou, Z. Y., Kuang, S. B., Chu, K. W., Yu, A. B.: Discrete particle simulation of particle–fluid flow: model formulations and their applicability. Journal of Fluid Mechanics 661, 482–510, (2010)

    Article  MathSciNet  Google Scholar 

  22. Di Felice, R.: The voidage function for fluid–particle interaction systems. International Journal of Multiphase Flow 20, 153–159, (1994)

    Article  Google Scholar 

  23. Hilton, J., Cleary, P. (2009) The Role of Particle Shape in Pneumatic Conveying. In: Proceedings of the Seventh International Conference on CFD in the Minerals and Process Industries (CSIRO)

    Google Scholar 

  24. Oschmann, T., Vollmari, K., Kruggel-Emden, H., Wirtz, S.: Numerical investigation of the mixing of non-spherical particles in fluidized beds and during pneumatic conveying. Procedia Engineering 102, 976–985, (2015)

    Article  Google Scholar 

  25. Hager, A., Kloss, K., Pirker, S., Goniva, C. (2012) Parallel Open Source CFD-DEM for Resolved Particle-Fluid Interaction. In: Proceedings of the Ninth International Conference on CFD in the Minerals and Process Industries (CSIRO)

    Google Scholar 

Download references

Acknowledgements

This work was funded by the German Federal Ministry of Economy and Technology (BMWi) in the framework of the INNO-KOM-Ost project under grant VF130034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Lohse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lohse, R., Palzer, U. (2019). Drag Model for Coupled CFD-DEM Simulations of Non-spherical Particles. In: Nóbrega, J., Jasak, H. (eds) OpenFOAM® . Springer, Cham. https://doi.org/10.1007/978-3-319-60846-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60846-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60845-7

  • Online ISBN: 978-3-319-60846-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics