Skip to main content

Simulation of a Moving-Bed Reactor and a Fluidized-Bed Reactor by DPM and MPPIC in OpenFOAM®

  • Chapter
  • First Online:
OpenFOAM®

Abstract

Simulations are performed for a moving-bed reactor in a rotary kiln and a fluidized-bed reactor in a FINEX plant. The DEM (Discrete Element Method) and the MPPIC (Multiphase Particle-In-Cell) methods are combined with a compressible reacting flow in OpenFOAM® 2.3.x. The computational load is reduced by the DPM (Discrete Particle Method), in which a computational parcel represents a fixed number of identical particles in the DEM. The slumping and rolling modes are reproduced by adjusting particle–particle and particle–wall friction coefficients to match the regime map in Henein et al. [1]. Validation is performed in a pilot-scale rotary kiln for reduction of iron ore with heat input from LPG (Liquefied Petroleum Gas). Simulation results in a lab-scale reactor are validated against those by commercial software and experimental data for the fluidized-bed reactor. Simulation results show good agreement with actual operating data for an industrial-scale fluidized-bed reactor in the FINEX process. Reasonable trends are reproduced for the bed burners and the collective motion of particles of different diameters in the FINEX plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Henein, J.K. Brimacombe, A.P. Watkinson (1983) The modeling of transverse solids motion in rotary kilns. Metall Trans B 14 (2):207–220.

    Article  Google Scholar 

  2. P. Trambouze, J.-P. Euzen (2004) Chemical Reactors: From Design to Operation. Technip, Paris.

    Google Scholar 

  3. P.A. Cundall, O.D. Strack (1979) A discrete numerical model for granular assemblies. Geotechnique 29 (1):47–65.

    Article  Google Scholar 

  4. Y. Tsuji, T. Kawaguchi, T. Tanaka (1993) Discrete particle simulation of two-dimensional fluidized bed. Powder Technol 77 (1):79–87.

    Article  Google Scholar 

  5. Y. Tsuji (2007) Multi-scale modeling of dense phase gas–particle flow. Chem Eng Sci 62(13):3410–3418.

    Article  Google Scholar 

  6. Dalibor. Jajcevic, Eva Siegmann, Charles Radeke et al (2013) Large-scale CFD-DEM simulations of fluidized granular systems. Chem Eng Sci 98(19):298–310.

    Google Scholar 

  7. M. J. Anderews, P.J. O’Rourke (1996) The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. Int J Multiphase Flow 22(2):379–402.

    Google Scholar 

  8. Sreekanth Pannala, Madhava Syamlal, Thomas J. O’Brien (2010) Computational gas-solids flows and reacting system: Theory, Methods and Practice. IGI Global, New York.

    Google Scholar 

  9. Stefan Luding (2008) Introduction to discrete element methods: basic of contact force models and how to perform the micro-macro transition to continuum theory. European Journal of Environmental and Civil Engineering 12:785–826.

    Article  Google Scholar 

  10. C. Y. Wen, Y. H. Yu (1966) A generalized method for predicting the minimum fluidization velocity, Chem. Eng. AIChE J 12(3):610–612.

    Article  Google Scholar 

  11. Mikio Sakai, Yoshinori Yamada, Yusuke Shigeto et al (2010) Large-scale discrete element modeling in a fluidized bed. Int J Numer Methods Fluids 64:1319–1335.

    Google Scholar 

  12. F.A. Williams (1985) Combustion Theory, 2nd edition. The Benjamin/Cumming Publishing, California.

    Google Scholar 

  13. S. E. Harris, D. G. Crighton (1994) Solitons, solitary waves, and voidage disturbances in gas-fulidized beds. J Fluid Mech 266:243–276.

    Article  MathSciNet  Google Scholar 

  14. F. M. Aureais, R. Jackson, W. B. Russel (1988) The solution of shocks and the effects of compressible sediments in transient settling. J Fluid Mech 195:437–462.

    Google Scholar 

  15. D. M. Snider (2001) An incompressible three-dimensional multiphase particle-in-cell method for dense particle flows. J Comput Phys 170(2):523–549.

    Google Scholar 

  16. N. Peters (2000) Turbulent Combustion. Cambridge University Press, Cambridge.

    Google Scholar 

  17. H. Watanabe, M. Otaka (2006) Numerical simulation of coal gasification in entrained flow coal gasifier. Fuel 85:1935–1943.

    Article  Google Scholar 

  18. John R. Howell, Pinar Menguc, Robert Siegel (2015) Thermal radiation heat transfer, 6th edition. CRC press, Florida.

    Google Scholar 

  19. H. Henein, J.K. Brimacombe, A.P. Watkinson (1983) Experimental study of transverse bed motion in rotary kilns. Metall Trans B 14 (2):191–205.

    Article  Google Scholar 

  20. H. Tsuji (2012) Behavior of reduction and growth of metal in Smelting of Saprolite Ni-ore in a Rotary Kiln for Production of Ferro-nickel Alloy. ISIJ Int 52 (6):1000–1009.

    Article  Google Scholar 

  21. CFDEM (2016) CFEDM Benchmarks. http://www.cfdem.com/cfdem-benchmarks.

  22. ANSYS. ANSYS FLUENT User’s Guide. ANSYS Inc., Cannonsburg, PA, 2012.

    Google Scholar 

  23. M.J.V. Goldschmidt, R. Beetstra, J.A.M. Kuipers (2004) Hydrodynamic modelling of dense gas-fluidised beds: comparison and validation of 3D discrete particle and continuum models. Powder Technol 142:23–47.

    Article  Google Scholar 

  24. J. S. Lin, M. M. Chen, B. T. Chao (1985) A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds. AIChE J 31(3):465–473.

    Article  Google Scholar 

  25. C. R. Muller, S. A. Scott, D. J. Holland et al. (2009) Validation of a discrete element model using magnetic resonance measurements. Particuology 7(4):297–306.

    Article  Google Scholar 

  26. POSCO (2014) Technological Advance of the FINEX® Ironmaking Process. Paper presented at Asian Pellets and DRI Conference, Zurich Marriott Hotel, Singapore, 8–9 July 2014.

    Google Scholar 

  27. D. Kunii, O. Levenspiel (1991) Fluidization Engineering, 2nd edition. Butterworth-Heinemann, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Y. Huh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jang, K., Han, W., Huh, K.Y. (2019). Simulation of a Moving-Bed Reactor and a Fluidized-Bed Reactor by DPM and MPPIC in OpenFOAM®. In: Nóbrega, J., Jasak, H. (eds) OpenFOAM® . Springer, Cham. https://doi.org/10.1007/978-3-319-60846-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60846-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60845-7

  • Online ISBN: 978-3-319-60846-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics