Skip to main content

Liquid Atomization Modeling in OpenFOAM\(^{\textregistered }\)

  • Chapter
  • First Online:
OpenFOAM®

Abstract

Several approaches have been developed to simulate liquid-jet atomization phenomena. Despite recent developments in numerical methods and computer performance, direct numerical simulation of the atomization process remains inaccessible for practical applications. Therefore, to carry out numerical simulations of the injected liquid from the internal flow within flow as far as the final dispersed spray, a modeling strategy has been developed. It is composed of a set of models implemented within the open-source software \(\texttt {OpenFOAM}^{\textregistered }\). First, the so-called Euler–Lagrange Spray Atomization (ELSA) approach is introduced. This is Eulerian formulation dedicated to jet atomization that is based on the analogy of turbulent mixing in a flow with variable density in the limit of infinite Reynolds and Weber numbers. Second, ELSA’s extension to a Quasi-Multiphase Eulerian (QME) approach is proposed. This method solves the problem of a second-order closure in modeling the turbulent liquid flux, hence solving the slip velocity between the phases. Third, an enhanced version of ELSA coupling with an Interface Capturing Method (ICM) and a Lagrangian approach for the final spray are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Lebas, T. Menard, P.A. Beau, A. Berlemont, and F.X. Demoulin. Numerical simulation of primary break-up and atomization: DNS and modelling study. International Journal of Multiphase Flow, 35(3):247–260, 2009.

    Article  Google Scholar 

  2. T. Menard, S. Tanguy, and A. Berlemont. Coupling level set/vof/ghost fluid methods: Validation and application to 3d simulation of the primary break-up of a liquid jet. International Journal of Multiphase Flow, 33(5):510–524, 2007.

    Article  Google Scholar 

  3. J. Shinjo and A. Umemura. Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation. International Journal of Multiphase Flow, 36(7):513–532, 2010.

    Article  Google Scholar 

  4. J. Shinjo and A. Umemura. Surface instability and primary atomization characteristics of straight liquid jet sprays. International Journal of Multiphase Flow, 37(10):1294–1304, 2011.

    Article  Google Scholar 

  5. F. A. Williams. Spray combustion and atomization. Physics of Fluids, 1(6):541–545, 1958.

    Article  Google Scholar 

  6. G.A. Bird. Molecular gas dynamics and the direct simulation of gas flows. Oxford University Press, 1994.

    Google Scholar 

  7. Frédérique Laurent and Marc Massot. Multi-fluid modelling of laminar polydisperse spray flames: origin, assumptions and comparison of sectional and sampling methods. Combustion Theory and Modelling, 5(4):537–572, 2001.

    Article  Google Scholar 

  8. Frédérique Laurent, Alaric Sibra, and François Doisneau. Two-size moment Eulerian multi-fluid model: a flexible and realizable high-fidelity description of polydisperse moderately dense evaporating sprays. June 2015.

    Google Scholar 

  9. C. Yuan, F. Laurent, and R.O. Fox. An extended quadrature method of moments for population balance equations. Journal of Aerosol Science, 51:1–23, 2012.

    Article  Google Scholar 

  10. D. Kah, F. Laurent, M. Massot, and S. Jay. A high order moment method simulating evaporation and advection of a polydisperse liquid spray. Journal of Computational Physics, 231(2):394–422, 2012.

    Article  MathSciNet  Google Scholar 

  11. Michael Frenklach. Method of moments with interpolative closure. Chemical Engineering Science, 57(12):2229–2239, 2002. Population balance modelling of particulate systems.

    Article  Google Scholar 

  12. Stephen L. Passman Donald A. Drew. Theory of Multicomponent Fluids. Springer-Verlag New York, 1999.

    Google Scholar 

  13. Ariane Vallet and Roland Borghi. Modélisation eulerienne de l’atomisation d’un jet liquide. Comptes Rendus de l’AcadÃl’mie des Sciences - Series IIB - Mechanics-Physics-Astronomy, 327(10):1015–1020, 1999.

    MATH  Google Scholar 

  14. F.X. Demoulin, P.A. Beau, G. Blokkeel, A. Mura, and R. Borghi. A new model for turbulent flows with large large density fluctuations: application to liquid atomization. Atomization and Sprays, 17(4):315–345, 2007.

    Article  Google Scholar 

  15. B Duret, J Reveillon, T Menard, and FX Demoulin. Improving primary atomization modeling through dns of two-phase flows. International Journal of Multiphase Flow, 55:130–137, 2013.

    Article  Google Scholar 

  16. E. Deutsch and O. Simonin. Large eddy simulation applied to the motion of particles in stationary homogeneous fluid turbulence. Turbulence Modification in Multiphase Flows-ASME FED, 110(35), 1991.

    Google Scholar 

  17. O. Simonin. Statistical and continuum modelling of turbulent reactive particulate flows. Lecture Series 1996–02, Von Karman Institute for Fluid Dynamics, 2000.

    Google Scholar 

  18. Antonio Andreini, Cosimo Bianchini, Stefano Puggelli, and F.X. Demoulin. Development of a turbulent liquid flux model for eulerian eulerian multiphase flow simulations. International Journal of Multiphase Flow, 81:88–103, 2016.

    Article  MathSciNet  Google Scholar 

  19. F Raees, DR Van der Heul, and Cornelis Vuik. Evaluation of the interface-capturing algorithm of OpenFOAM\({^{\textregistered }}\) for the simulation of incompressible immiscible two-phase flow. Technical report, Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Institute of Applied Mathematics, 2011.

    Google Scholar 

  20. Nicolas Hecht. Simulation aux grandes échelles des écoulements liquide-gaz : application á l’atomisation. PhD thesis, University of Rouen, 2014.

    Google Scholar 

  21. Romain Lebas, Pierre-Arnaud Beau, Gregory Blokkeel, and Francois-Xavier Demoulin. Elsa model for atomization: To benefit of the eulerian and lagrangian descriptions of the liquid phase. In Proceedings of ASME Fluids Engineering Division Summer Meeting, volume 2006, 2006.

    Google Scholar 

Download references

Acknowledgements

We acknowledge the CINECA award under the ISCRA initiative, for the availability of high-performance computing resources and support. A large part of the results reported here have been also obtained using TGCC-Curie, CRIHAN, and GENCI (IDRIS) supercomputers. They are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Reveillon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anez, J., Puggelli, S., Hecht, N., Andreini, A., Reveillon, J., Demoulin, F.X. (2019). Liquid Atomization Modeling in OpenFOAM\(^{\textregistered }\). In: Nóbrega, J., Jasak, H. (eds) OpenFOAM® . Springer, Cham. https://doi.org/10.1007/978-3-319-60846-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60846-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60845-7

  • Online ISBN: 978-3-319-60846-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics