Skip to main content

Apoptosis, Autophagy, and Unfolded Protein Response and Cerebellar Development

  • Chapter
  • First Online:
Development of the Cerebellum from Molecular Aspects to Diseases

Abstract

Development is an evolutionary process that is tightly regulated in mammalian species. Several different cascades are involved in different stages of development. Among these mechanisms, apoptosis, autophagy, and unfolded protein response play critical roles in regulation of development by affecting the cell fate. All of these pathways are involved in regulation of cell number via determining the life and death cycles of the cells. In this chapter, we first explain the brief mechanisms that are involved in regulation of apoptosis, autophagy, and unfolded protein response, and later, we briefly describe how these mechanisms play roles in general development. We then discuss the importance of these pathways in regulation of cerebellar development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

Apaf-1:

Apoptotic protease activating factor 1

ATF4:

Activating transcription factor 4

ATF6:

Activating transcription factor 6

ATGs:

Autophagy-related proteins

Bcl-2:

B-cell lymphoma protein 2

BiP:

Immunoglobulin heavy chain binding protein

bZIP:

Basic leucine zipper protein

CAD:

Caspase-activated DNase

CARD:

Caspase recruitment domains

Caspases:

Cysteinyl aspartate proteases

CERKL:

Ceramide kinase-like

CGS:

Cerebellar granule cells

CHOP:

C/EBP homologous protein

CMA:

Chaperone-mediated autophagy

Cyt c :

Cytochrome c

DED:

Death effector domain

DIABLO:

Direct IAP binding protein with low pI

DISC:

Death-inducing signaling complex

DTT:

Dithiothreitol

EGL:

External granule layer

eif2α:

Eukaryotic initiation factor 2 alpha

ER:

Endoplasmic reticulum

ERAD:

ER-associated protein degradation

ERSE:

ER stress response element

FADD:

Fas-associated death domain

GCPs:

Granule cell precursors

GL:

Granule layer

GNPs:

Granule neuron precursors

GRPs:

Glucose-regulated proteins

HA:

Hemagglutinin

HD:

Huntington’s disease

HSPs:

Heat shock proteins

HSR:

Heat shock response

HtrA2:

High temperature requirement protein A

IGL:

Internal granule layer

IRE1:

Inositol-requiring transmembrane kinase/endoribonuclease 1

LC3:

Microtubule-associated protein light chain 3

MPT:

Mitochondrial permeability transition

mTOR:

Mammalian target of rapamycin

NOND:

Naturally occurring neuronal death

pcd :

Purkinje cell degeneration

PCD:

Programmed cell death

PD:

Parkinson’s disease

PDI:

Protein disulfide isomerase

PE:

Phosphatidylethanolamine

PERK:

Double-stranded RNA (PKR)-activated protein kinase-like eukaryotic initiation factor 2α kinase

PI3K:

Phosphatidylinositol 3-kinase

PMDs:

Protein misfolding disorders

PMT:

Permeability membrane transition

PrDs:

Prion-related diseases

ROS:

Reactive oxygen species

Smac:

Second mitochondria-derived activator of caspase

TGF:

Transforming growth factors

TRADD:

TNF receptor-associated death domain

ULK:

Unc-51-like kinase

VZ:

Ventricular zone

XBP1:

X-box binding protein-1

XBP1s:

Spliced XBP1

XBP1U:

Unspliced XBP1

References

  1. Aburto MR, Hurlé JM, Varela-Nieto I, Magariños M. Autophagy during vertebrate development. Cell. 2012;1:428–48.

    Article  Google Scholar 

  2. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell. 2002;9:423–32.

    Article  CAS  PubMed  Google Scholar 

  3. Altman J. Postnatal development of the cerebellar cortex in the rat. III. Maturation of the components of the granular layer. J Comp Neurol. 1972;145:465–513.

    Article  CAS  PubMed  Google Scholar 

  4. Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J. 2000;345:271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anttonen AK, Mahjneh I, Hamalainen RH, Lagier-Tourenne C, Kopra O, Waris L, Anttonen M, Joensuu T, Kalimo H, Paetau A, Tranebjaerg L, Chaigne D, Koenig M, Eeg-Olofsson O, Udd B, Somer M, Somer H, Lehesjoki AE. The gene disrupted in Marinesco-Sjogren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet. 2005;37:1309–11.

    Article  CAS  PubMed  Google Scholar 

  6. Arnoult D, Parone P, Martinou J-C, Antonsson B, Estaquier J, Ameisen JC. Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli. J Cell Biol. 2002;159:923–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Austin RC. The unfolded protein response in health and disease. Antioxid Redox Signal. 2009;11:2279–87.

    Article  CAS  PubMed  Google Scholar 

  8. Baehrecke E. Autophagic programmed cell death in Drosophila. Cell Death Differ. 2003;10:940–5.

    Article  CAS  PubMed  Google Scholar 

  9. Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science. 2008;319:916–9.

    Article  CAS  PubMed  Google Scholar 

  10. Brunsing R, Omori SA, Weber F, Bicknell A, Friend L, Rickert R, Niwa M. B- and T-cell development both involve activity of the unfolded protein response pathway. J Biol Chem. 2008;283:17954–61.

    Article  CAS  PubMed  Google Scholar 

  11. Carneiro BA, Kaplan JB, Altman JK, Giles FJ, Platanias LC. Targeting mTOR signaling pathways and related negative feedback loops for the treatment of acute myeloid leukemia. Cancer Biol Ther. 2015;16:648–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cecconi F, Levine B. The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell. 2008;15:344–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chaabane W, User SD, El-Gazzah M, Jaksik R, Sajjadi E, Rzeszowska-Wolny J, Łos MJ. Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer. Arch Immunol Ther Exp. 2013;61:43–58.

    Article  CAS  Google Scholar 

  14. Chakrabarti L, Eng J, Ivanov N, Garden GA, La Spada AR. Autophagy activation and enhanced mitophagy characterize the Purkinje cells of pcd mice prior to neuronal death. Mol Brain. 2009;2:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cheng XS, Li MS, Du J, Jiang QY, Wang L, Yan SY, Yu DM, Deng JB. Neuronal apoptosis in the developing cerebellum. Anat Histol Embryol. 2011;40:21–7.

    Article  CAS  PubMed  Google Scholar 

  16. Cho YM, Jang Y-S, Jang Y-M, Chung S-M, Kim H-S, Lee J-H, Jeong S-W, Kim I-K, Kim JJ, Kim K-S. Induction of unfolded protein response during neuronal induction of rat bone marrow stromal cells and mouse embryonic stem cells. Exp Mol Med. 2009;41:440–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol. 2001;3:339–45.

    Article  CAS  PubMed  Google Scholar 

  18. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.

    Article  CAS  PubMed  Google Scholar 

  19. D’Mello SR, Galli C, Ciotti T, Calissano P. Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci. 1993;90:10989–93.

    Article  PubMed  PubMed Central  Google Scholar 

  20. De Luca A, Weller M, Fontana A. TGF-beta-induced apoptosis of cerebellar granule neurons is prevented by depolarization. J Neurosci. 1996;16:4174–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Di Bartolomeo S, Nazio F, Cecconi F. The role of autophagy during development in higher eukaryotes. Traffic. 2010;11:1280–9.

    Article  CAS  PubMed  Google Scholar 

  22. Ding W-X, Ni H-M, Gao W, Hou Y-F, Melan MA, Chen X, Stolz DB, Shao Z-M, Yin X-M. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem. 2007;282:4702–10.

    Article  CAS  PubMed  Google Scholar 

  23. Dong H, Czaja MJ. Regulation of lipid droplets by autophagy. Trends Endocrinol Metab. 2011;22:234–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986;44:817–29.

    Article  CAS  PubMed  Google Scholar 

  25. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fadeel B, Orrenius S, Zhivotovsky B. Apoptosis in human disease: a new skin for the old ceremony? Biochem Biophys Res Commun. 1999;266:699–717.

    Article  CAS  PubMed  Google Scholar 

  27. Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P. Ambra1 regulates autophagy and development of the nervous system. Nature. 2007;447:1121–5.

    Article  CAS  PubMed  Google Scholar 

  28. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73:1907–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Firtina Z, Duncan MK. Unfolded Protein Response (UPR) is activated during normal lens development. Gene Expr Patterns. 2011;11:135–43.

    Article  CAS  PubMed  Google Scholar 

  30. Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011;147:742–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Galli C, Meucci O, Scorziello A, Werge TM, Calissano P, Schettini G. Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J Neurosci. 1995;15:1172–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gass JN, Jiang HY, Wek RC, Brewer JW. The unfolded protein response of B-lymphocytes: PERK-independent development of antibody-secreting cells. Mol Immunol. 2008;45:1035–43.

    Article  CAS  PubMed  Google Scholar 

  33. Ghavami S, Gupta S, Ambrose E, Hnatowich M, Freed D, Dixon I. Autophagy and heart disease: implications for cardiac ischemia-reperfusion damage. Curr Mol Med. 2014;14:616–29.

    Article  CAS  PubMed  Google Scholar 

  34. Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M, Bus CJ, Kadkhoda K, Wiechec E, Halayko AJ. Apoptosis and cancer: mutations within caspase genes. J Med Genet. 2009;46:497–510.

    Article  CAS  PubMed  Google Scholar 

  35. Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol. 2014;112:24–49.

    Article  CAS  PubMed  Google Scholar 

  36. Godin JD, Creppe C, Laguesse S, Nguyen L. Emerging roles for the unfolded protein response in the developing nervous system. Trends Neurosci. 2016;39:394–404.

    Article  CAS  PubMed  Google Scholar 

  37. Haanen C, Vermes I. Apoptosis: programmed cell death in fetal development. Eur J Obstet Gynecol Reprod Biol. 1996;64:129–33.

    Article  CAS  PubMed  Google Scholar 

  38. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000;6:1099–108.

    Article  CAS  PubMed  Google Scholar 

  39. Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999;397:271–4.

    Article  CAS  PubMed  Google Scholar 

  40. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11:619–33.

    Article  CAS  PubMed  Google Scholar 

  41. Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 1999;10:3787–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov. 2013;12:703–19.

    Article  CAS  PubMed  Google Scholar 

  43. Hetz C, Mollereau B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci. 2014;15:233–49.

    Article  CAS  PubMed  Google Scholar 

  44. Higashi T, Nishi S, Nakai A, Nagata K. Regulatory mechanism of stress response in mammalian nervous system during cerebral ischaemia or after heat shock. Neuropathol Appl Neurobiol. 1995;21:480–3.

    Article  CAS  PubMed  Google Scholar 

  45. Higashi T, Takechi H, Uemura Y, Kikuchi H, Nagata K. Differential induction of mRNA species encoding several classes of stress proteins following focal cerebral ischemia in rats. Brain Res. 1994;650:239–48.

    Article  CAS  PubMed  Google Scholar 

  46. Hoozemans JJ, Stieler J, Van Haastert ES, Veerhuis R, Rozemuller AJ, Baas F, Eikelenboom P, Arendt T, Scheper W. The unfolded protein response affects neuronal cell cycle protein expression: implications for Alzheimer’s disease pathogenesis. Exp Gerontol. 2006;41:380–6.

    Article  CAS  PubMed  Google Scholar 

  47. Hosokawa N, Hara Y, Mizushima N. Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size. FEBS Lett. 2006;580:2623–9.

    Article  CAS  PubMed  Google Scholar 

  48. Hossmann K-A. Disturbances of cerebral protein synthesis and ischemic cell death. Prog Brain Res. 1993;96:161–77.

    Article  CAS  PubMed  Google Scholar 

  49. Imaizumi K, Miyoshi K, Katayama T, Yoneda T, Taniguchi M, Kudo T, Tohyama M. The unfolded protein response and Alzheimer’s disease. Biochim Biophys Acta. 2001;1536:85–96.

    Article  CAS  PubMed  Google Scholar 

  50. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzunov DP, Smalheiser NR, Davis JM, Pandey GN. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci. 1998;95:15718–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jayakiran M. Apoptosis-biochemistry: a mini review. J Clin Exp Pathol. 2015;5:1–4.

    Google Scholar 

  52. Jeffrey M, Scott J, Williams A, Fraser H. Ultrastructural features of spongiform encephalopathy transmitted to mice from three species of bovidae. Acta Neuropathol. 1992;84:559–69.

    Article  CAS  PubMed  Google Scholar 

  53. Jia Y, Jucius TJ, Cook SA, Ackerman SL. Loss of Clcc1 results in ER stress, misfolded protein accumulation, and neurodegeneration. J Neurosci. 2015;35:3001–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jin HO, Seo SK, Woo SH, Kim ES, Lee HC, Yoo DH, An S, Choe TB, Lee SJ, Hong SI, Rhee CH, Kim JI, Park IC. Activating transcription factor 4 and CCAAT/enhancer-binding protein-beta negatively regulate the mammalian target of rapamycin via Redd1 expression in response to oxidative and endoplasmic reticulum stress. Free Radic Biol Med. 2009;46:1158–67.

    Article  CAS  PubMed  Google Scholar 

  55. Jovaisaite V, Mouchiroud L, Auwerx J. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol. 2014;217:137–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci. 2011;4:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kerr J. A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes. J Pathol Bacteriol. 1965;90:419–35.

    Article  CAS  PubMed  Google Scholar 

  58. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kitao Y, Hashimoto K, Matsuyama T, Iso H, Tamatani T, Hori O, Stern DM, Kano M, Ozawa K, Ogawa S. ORP150/HSP12A regulates Purkinje cell survival: a role for endoplasmic reticulum stress in cerebellar development. J Neurosci. 2004;24:1486–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Klionsky DJ. The molecular machinery of autophagy: unanswered questions. J Cell Sci. 2005;118:7–18.

    Article  CAS  PubMed  Google Scholar 

  61. Komatsu M, Waguri S, Koike M, Sou Y-S, Ueno T, Hara T, Mizushima N, Iwata J-I, Ezaki J, Murata S. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131:1149–63.

    Article  CAS  PubMed  Google Scholar 

  62. Komatsu M, Wang QJ, Holstein GR, Friedrich VL, Iwata J-I, Kominami E, Chait BT, Tanaka K, Yue Z. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci. 2007;104:14489–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman R, Kominami E, Momoi T. ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 2007;14:230–9.

    Article  CAS  PubMed  Google Scholar 

  64. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature. 1988;332:462–4.

    Article  CAS  PubMed  Google Scholar 

  65. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature. 2004;432:1032–6.

    Article  CAS  PubMed  Google Scholar 

  66. Laguesse S, Creppe C, Nedialkova DD, Prévot P-P, Borgs L, Huysseune S, Franco B, Duysens G, Krusy N, Lee G. A dynamic unfolded protein response contributes to the control of cortical neurogenesis. Dev Cell. 2015;35:553–67.

    Article  CAS  PubMed  Google Scholar 

  67. Lee AS. Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem Sci (TIBS). 1987;12:20–3.

    Article  CAS  Google Scholar 

  68. Lee AS. Mammalian stress response: induction of the glucose-regulated protein family. Curr Opin Cell Biol. 1992;4:267–73.

    Article  CAS  PubMed  Google Scholar 

  69. Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA, Davisson MT, Sundberg JP, Schimmel P, Ackerman SL. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature. 2006;443:50–5.

    Article  CAS  PubMed  Google Scholar 

  70. Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, Yoshida H, Mori K, Kaufman RJ. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 2002;16:452–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leist M, Jäättelä M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol. 2001;2:589–98.

    Article  CAS  PubMed  Google Scholar 

  72. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2:183–92.

    Article  CAS  PubMed  Google Scholar 

  73. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6:463–77.

    Article  CAS  PubMed  Google Scholar 

  74. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8:627–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lockshin RA, Zakeri Z. Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol. 2001;2:545–50.

    Article  CAS  PubMed  Google Scholar 

  77. Loeffler M, Kroemer G. The mitochondrion in cell death control: certainties and incognita. Exp Cell Res. 2000;256:19–26.

    Article  CAS  PubMed  Google Scholar 

  78. Lossi L, Gambino G. Apoptosis of the cerebellar neurons. Histol Histopathol. 2008; 23(3):367–80.

    Google Scholar 

  79. Ma Y, Brewer JW, Diehl JA, Hendershot LM. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol. 2002;318:1351–65.

    Article  CAS  PubMed  Google Scholar 

  80. Mandal NA, Tran JT, Saadi A, Rahman AK, Huynh TP, Klein WH, Cho JH. Expression and localization of CERKL in the mammalian retina, its response to light-stress, and relationship with NeuroD1 gene. Exp Eye Res. 2013;106:24–33.

    Article  CAS  PubMed  Google Scholar 

  81. Marsden VS, O’Connor L, O’Reilly LA, Silke J, Metcalf D, Ekert PG, Huang DC, Cecconi F, Kuida K, Tomaselli KJ. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature. 2002;419:634–7.

    Article  CAS  PubMed  Google Scholar 

  82. Marzban H, Del Bigio MR, Alizadeh J, Ghavami S, Zachariah RM, Rastegar M. Cellular commitment in the developing cerebellum. Front Cell Neurosci. 2015;8:450.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Massey AC, Zhang C, Cuervo AM. Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol. 2006;73:205–35.

    Article  CAS  PubMed  Google Scholar 

  84. Maycotte P, Guemez-Gamboa A, Moran J. Apoptosis and autophagy in rat cerebellar granule neuron death: role of reactive oxygen species. J Neurosci Res. 2010;88:73–85.

    Article  CAS  PubMed  Google Scholar 

  85. Meier P, Finch A, Evan G. Apoptosis in development. Nature. 2000;407:796–801.

    Article  CAS  PubMed  Google Scholar 

  86. Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010;12:823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y. A protein conjugation system essential for autophagy. Nature. 1998;395:395–8.

    Article  CAS  PubMed  Google Scholar 

  88. Mori K. Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem. 2009;146:743–50.

    Article  CAS  PubMed  Google Scholar 

  89. Mortensen M, Simon AK. Nonredundant role of Atg7 in mitochondrial clearance during erythroid development. Autophagy. 2010;6:423–5.

    Article  PubMed  Google Scholar 

  90. Munro S, Pelham HR. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell. 1986;46:291–300.

    Article  CAS  PubMed  Google Scholar 

  91. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10:458–67.

    Article  CAS  PubMed  Google Scholar 

  92. Naughton MC, Mcmahon JM, Fitzgerald U. Differential activation of ER stress pathways in myelinating cerebellar tracts. Int J Dev Neurosci. 2015;47:347–60.

    Article  CAS  PubMed  Google Scholar 

  93. Partaledis JA, Berlin V. The FKB2 gene of Saccharomyces cerevisiae, encoding the immunosuppressant-binding protein FKBP-13, is regulated in response to accumulation of unfolded proteins in the endoplasmic reticulum. Proc Natl Acad Sci U S A. 1993;90:5450–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pavlovsky AA, Boehning D, Li D, Zhang Y, Fan X, Green TA. Psychological stress, cocaine and natural reward each induce endoplasmic reticulum stress genes in rat brain. Neuroscience. 2013;246:160–9.

    Article  CAS  PubMed  Google Scholar 

  95. Puthalakath H, Strasser A. Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ. 2002;9:505–12.

    Article  CAS  PubMed  Google Scholar 

  96. Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD. Programmed cell death and the control of cell survival: lessons from the nervous system. Science. 1993;262:695–700.

    Article  CAS  PubMed  Google Scholar 

  97. Rathmell JC, Thompson CB. Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell. 2002;109:S97–S107.

    Article  CAS  PubMed  Google Scholar 

  98. Samali A, Zhivotovsky B, Jones D, Nagata S, Orrenius S. Apoptosis: cell death defined by caspase activation. Cell Death Differ. 1999;6:495.

    Article  CAS  PubMed  Google Scholar 

  99. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098–101.

    Article  CAS  PubMed  Google Scholar 

  100. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17:1675–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Scheper W, Nijholt DA, Hoozemans JJ. The unfolded protein response and proteostasis in Alzheimer disease: preferential activation of autophagy by endoplasmic reticulum stress. Autophagy. 2011;7:910–1.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Schulz JB, Weller M, Klockgether T. Potassium deprivation-induced apoptosis of cerebellar granule neurons: a sequential requirement for new mRNA and protein synthesis, ICE-like protease activity, and reactive oxygen species. J Neurosci. 1996;16:4696–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Senderek J, Krieger M, Stendel C, Bergmann C, Moser M, Breitbach-Faller N, Rudnik-Schoneborn S, Blaschek A, Wolf NI, Harting I, North K, Smith J, Muntoni F, Brockington M, Quijano-Roy S, Renault F, Herrmann R, Hendershot LM, Schroder JM, Lochmuller H, Topaloglu H, Voit T, Weis J, Ebinger F, Zerres K. Mutations in SIL1 cause Marinesco-Sjogren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Genet. 2005;37:1312–4.

    Article  CAS  PubMed  Google Scholar 

  104. Sone M, Zeng X, Larese J, Ryoo HD. A modified UPR stress sensing system reveals a novel tissue distribution of IRE1/XBP1 activity during normal Drosophila development. Cell Stress Chaperones. 2013;18:307–19.

    Article  CAS  PubMed  Google Scholar 

  105. Sood R, Porter AC, Ma K, Quilliam LA, Wek RC. Pancreatic eukaryotic initiation factor-2alpha kinase (PEK) homologues in humans, Drosophila melanogaster and Caenorhabditis elegans that mediate translational control in response to endoplasmic reticulum stress. Biochem J. 2000;346(Pt 2):281–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci. 2003;4:49–60.

    Article  CAS  PubMed  Google Scholar 

  107. Takahashi R, Deveraux Q, Tamm I, Welsh K, Assa-Munt N, Salvesen GS, Reed JC. A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem. 1998;273:7787–90.

    Article  CAS  PubMed  Google Scholar 

  108. Thuerauf DJ, Marcinko M, Belmont PJ, Glembotski CC. Effects of the isoform-specific characteristics of ATF6 alpha and ATF6 beta on endoplasmic reticulum stress response gene expression and cell viability. J Biol Chem. 2007;282:22865–78.

    Article  CAS  PubMed  Google Scholar 

  109. Tomoda T, Bhatt RS, Kuroyanagi H, Shirasawa T, Hatten ME. A mouse serine/threonine kinase homologous to C. elegans UNC51 functions in parallel fiber formation of cerebellar granule neurons. Neuron. 1999;24:833–46.

    Article  CAS  PubMed  Google Scholar 

  110. Wang H, Wang X, Ke Z-J, Comer AL, Xu M, Frank JA, Zhang Z, Shi X, Luo J. Tunicamycin-induced unfolded protein response in the developing mouse brain. Toxicol Appl Pharmacol. 2015;283:157–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang M, Wey S, Zhang Y, Ye R, Lee AS. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal. 2009;11:2307–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol. 2012;197:857–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Welch WJ. The mammalian heat shock (or stress) response: a cellular defense mechanism. Adv Exp Med Biol. 1987;225:287–304.

    Article  CAS  PubMed  Google Scholar 

  114. Welch WJ. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev. 1992;72:1063–81.

    Article  CAS  PubMed  Google Scholar 

  115. Welch WJ, Kang HS, Beckmann RP, Mizzen LA. Response of mammalian cells to metabolic stress; changes in cell physiology and structure/function of stress proteins. Curr Top Microbiol Immunol. 1991;167:31–55.

    CAS  PubMed  Google Scholar 

  116. White E. Death-defying acts: a meeting review on apoptosis. Genes Dev. 1993;7:2277–84.

    Article  CAS  PubMed  Google Scholar 

  117. White EJ, Martin V, Liu J-L, Klein SR, Piya S, Gomez-Manzano C, Fueyo J, Jiang H. Autophagy regulation in cancer development and therapy. Am J Cancer Res. 2011;1:362.

    CAS  PubMed  Google Scholar 

  118. Wood KA, Dipasquale B, Youle RJ. In situ labeling of granule cells for apoptosis-associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum. Neuron. 1993;11:621–32.

    Article  CAS  PubMed  Google Scholar 

  119. Wood KA, Youle RJ. The role of free radicals and p53 in neuron apoptosis in vivo. J Neurosci. 1995;15:5851–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wooden SK, Li LJ, Navarro D, Qadri I, Pereira L, Lee AS. Transactivation of the grp78 promoter by malfolded proteins, glycosylation block, and calcium ionophore is mediated through a proximal region containing a CCAAT motif which interacts with CTF/NF-I. Mol Cell Biol. 1991;11:5612–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol. 2007;9:1102–9.

    Article  CAS  PubMed  Google Scholar 

  122. Yan G-M, Ni B, Weller M, Wood KA, Paul SM. Depolarization or glutamate receptor activation blocks apoptotic cell death of cultured cerebellar granule neurons. Brain Res. 1994;656:43–51.

    Article  CAS  PubMed  Google Scholar 

  123. Yang J, Zhou S, Gu J, Guo M, Xia H, Liu Y. UPR activation and the down-regulation of alpha-crystallin in human high myopia-related cataract lens epithelium. PLoS One. 2015;10:e0137582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010;12:814–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 2000;6:1355–64.

    Article  CAS  PubMed  Google Scholar 

  126. Yoshida H, Haze K, Yanagi H, Yura T, Mori K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem. 1998;273:33741–9.

    Article  CAS  PubMed  Google Scholar 

  127. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107:881–91.

    Article  CAS  PubMed  Google Scholar 

  128. Zhao L, Longo-Guess C, Harris BS, Lee J-W, Ackerman SL. Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet. 2005;37:974–9.

    Article  CAS  PubMed  Google Scholar 

  129. Zhao L, Rosales C, Seburn K, Ron D, Ackerman SL. Alteration of the unfolded protein response modifies neurodegeneration in a mouse model of Marinesco–Sjögren syndrome. Hum Mol Genet. 2010;19:25–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

JA was supported by Research Manitoba studentship. NA was supported by NSERC held by Dr. Hassan Marzban. SG was supported by Health Science Centre Foundation General Operating Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Ghavami BSc, MSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Moosavi, M.A. et al. (2017). Apoptosis, Autophagy, and Unfolded Protein Response and Cerebellar Development. In: Marzban, H. (eds) Development of the Cerebellum from Molecular Aspects to Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-59749-2_8

Download citation

Publish with us

Policies and ethics