Skip to main content

Clinical Aspects of the Inherited Cerebellar Malformations

  • Chapter
  • First Online:
Development of the Cerebellum from Molecular Aspects to Diseases

Abstract

Inherited cerebellar malformations cause lifelong disability and are not well studied in the newborns because there is a lack of appropriate clinical examination tools. Recently, inherited cerebellar malformations have been investigated using emerging advanced neuroimaging technology such as MRI, which revealed many cerebellar developmental disorders. These malformations cause impairments that involve motor and non-motor functions. Cerebellar hypoplasia, Dandy–Walker syndrome, Joubert syndrome, pontocerebellar hypoplasia, and rhombencephalosynapsis are examples of cerebellar malformations. In this chapter we will focus on cerebellar malformations that have been reported using characteristic symptoms and signs. The current approach for evaluation of the affected patients, differential diagnosis, and management will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bolduc ME, Limperopoulos C. Neurodevelopmental outcomes in children with cerebellar malformations: a systematic review. Dev Med Child Neurol. 2009;51(4):256–67.

    PubMed  Google Scholar 

  2. Allen G, et al. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275(5308):1940–3.

    CAS  PubMed  Google Scholar 

  3. Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266(5184):458–61.

    CAS  PubMed  Google Scholar 

  4. Leiner HC, Leiner AL, Dow RS. The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res. 1991;44(2):113–28.

    CAS  PubMed  Google Scholar 

  5. Hutchinson S, et al. Cerebellar volume of musicians. Cereb Cortex. 2003;13(9):943–9.

    PubMed  Google Scholar 

  6. Bhatia MS, Saha R, Gautam P. Cerebellar cognitive affective syndrome: a case report. Prim Care Companion CNS Disord. 2016;18(2). doi:10.4088/PCC.15l01851

  7. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.

    Google Scholar 

  8. Chang C, Siao SW. Cerebellar cognitive affective syndrome: attention deficit-hyperactivity disorder episode of adolescent with cerebellar atrophy in a psychiatric ward. Kaohsiung J Med Sci. 2016;32(1):52–4.

    PubMed  Google Scholar 

  9. Marien P, et al. Developmental coordination disorder: disruption of the cerebello-cerebral network evidenced by SPECT. Cerebellum. 2010;9(3):405–10.

    PubMed  Google Scholar 

  10. Marko MK, et al. Behavioural and neural basis of anomalous motor learning in children with autism. Brain. 2015;138(Pt 3):784–97.

    PubMed  PubMed Central  Google Scholar 

  11. Salman MS, Tsai P. The role of the pediatric cerebellum in motor functions, cognition, and behavior: a clinical perspective. Neuroimaging Clin N Am. 2016;26(3):317–29.

    PubMed  PubMed Central  Google Scholar 

  12. Mothersill O, Knee-Zaska C, Donohoe G. Emotion and theory of mind in schizophrenia-investigating the role of the cerebellum. Cerebellum. 2016;15(3):357–68.

    PubMed  Google Scholar 

  13. Minichino A, et al. The role of cerebellum in unipolar and bipolar depression: a review of the main neurobiological findings. Riv Psichiatr. 2014;49(3):124–31.

    PubMed  Google Scholar 

  14. Schutter DJ. A cerebellar framework for predictive coding and homeostatic regulation in depressive disorder. Cerebellum. 2016;15(1):30–3.

    CAS  PubMed  Google Scholar 

  15. Phillips JR, et al. The cerebellum and psychiatric disorders. Front Public Health. 2015;3:66.

    PubMed  PubMed Central  Google Scholar 

  16. Barkovich AJ, Millen KJ, Dobyns WB. A developmental and genetic classification for midbrain-hindbrain malformations. Brain. 2009;132(Pt 12):3199–230.

    PubMed  PubMed Central  Google Scholar 

  17. Abd-El-Barr MM, Strong CI, Groff MW. Chiari malformations: diagnosis, treatments and failures. J Neurosurg Sci. 2014;58(4):215–21.

    CAS  PubMed  Google Scholar 

  18. Tubbs RS, et al. The pediatric Chiari I malformation: a review. Childs Nerv Syst. 2007;23(11):1239–50.

    PubMed  Google Scholar 

  19. Marin-Padilla M, Marin-Padilla TM. Morphogenesis of experimentally induced Arnold-Chiari malformation. J Neurol Sci. 1981;50(1):29–55.

    CAS  Google Scholar 

  20. Wang J, et al. Acquired Chiari malformation and syringomyelia secondary to space-occupying lesions: a systematic review. World Neurosurg. 2016.

    Google Scholar 

  21. Fisahn C, et al. The Chiari 3.5 malformation: a review of the only reported case. Childs Nerv Syst. 2016;32(12):2317–9.

    PubMed  Google Scholar 

  22. Boyles AL, et al. Phenotypic definition of Chiari type I malformation coupled with high-density SNP genome screen shows significant evidence for linkage to regions on chromosomes 9 and 15. Am J Med Genet A. 2006;140(24):2776–85.

    Google Scholar 

  23. Victorio MC, Khoury CK. Headache and Chiari I malformation in children and adolescents. Semin Pediatr Neurol. 2016;23(1):35–9.

    PubMed  Google Scholar 

  24. Ejarque I, et al. Arnold-Chiari malformation in Noonan syndrome and other syndromes of the RAS/MAPK pathway. Rev Neurol. 2015;60(9):408–12.

    PubMed  Google Scholar 

  25. Yu F, et al. A new case of complete primary cerebellar agenesis: clinical and imaging findings in a living patient. Brain. 2015;138(Pt 6):e353.

    PubMed  Google Scholar 

  26. Poretti A, Boltshauser E, Doherty D. Cerebellar hypoplasia: differential diagnosis and diagnostic approach. Am J Med Genet C: Semin Med Genet. 2014;166C(2):211–26.

    Google Scholar 

  27. Wilkins RH. Natural history of intracranial vascular malformations: a review. Neurosurgery. 1985;16(3):421–30.

    CAS  PubMed  Google Scholar 

  28. Raybaud CA, Strother CM, Hald JK. Aneurysms of the vein of Galen: embryonic considerations and anatomical features relating to the pathogenesis of the malformation. Neuroradiology. 1989;31(2):109–28.

    CAS  PubMed  Google Scholar 

  29. Rao VR, Mathuriya SN. Pediatric aneurysms and vein of Galen malformations. J Pediatr Neurosci. 2011;6(Suppl 1):S109–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jones BV, et al. Vein of Galen aneurysmal malformation: diagnosis and treatment of 13 children with extended clinical follow-up. AJNR Am J Neuroradiol. 2002;23(10):1717–24.

    PubMed  PubMed Central  Google Scholar 

  31. Marzban H, et al. Cellular commitment in the developing cerebellum. Front Cell Neurosci. 2014;8:450.

    PubMed  Google Scholar 

  32. Millet S, et al. The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development. 1996;122(12):3785–97.

    CAS  PubMed  Google Scholar 

  33. Millen KJ, et al. Neurogenetics of the cerebellar system. J Child Neurol. 1999;14(9):574–81; discussion 581–2.

    Google Scholar 

  34. Eddison M, et al. Segmental identity and cerebellar granule cell induction in rhombomere 1. BMC Biol. 2004;2:14.

    PubMed  PubMed Central  Google Scholar 

  35. Chizhikov VV, et al. The roof plate regulates cerebellar cell-type specification and proliferation. Development. 2006;133(15):2793–804.

    CAS  PubMed  Google Scholar 

  36. Basson MA, Wingate RJ. Congenital hypoplasia of the cerebellum: developmental causes and behavioral consequences. Front Neuroanat. 2013;7:29.

    PubMed  PubMed Central  Google Scholar 

  37. Vermeer S, et al. Cerebellar ataxia and congenital disorder of glycosylation Ia (CDG-Ia) with normal routine CDG screening. J Neurol. 2007;254(10):1356–8.

    CAS  PubMed  Google Scholar 

  38. Turkmen S, et al. Cerebellar hypoplasia, with quadrupedal locomotion, caused by mutations in the very low-density lipoprotein receptor gene. Eur J Hum Genet. 2008;16(9):1070–4.

    CAS  PubMed  Google Scholar 

  39. Pearson T, et al. An intronic mutation in DKC1 in an infant with Hoyeraal-Hreidarsson syndrome. Am J Med Genet A. 2008;146A(16):2159–61.

    CAS  PubMed  Google Scholar 

  40. des Portes V, et al. Specific clinical and brain MRI features in mentally retarded patients with mutations in the Oligophrenin-1 gene. Am J Med Genet A. 2004;124A(4):364–71.

    PubMed  Google Scholar 

  41. Sellick GS, et al. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet. 2004;36(12):1301–5.

    CAS  PubMed  Google Scholar 

  42. Jaeken J, Matthijs G. Congenital disorders of glycosylation: a rapidly expanding disease family. Annu Rev Genomics Hum Genet. 2007;8:261–78.

    CAS  PubMed  Google Scholar 

  43. Tentler D, et al. Deletion including the oligophrenin-1 gene associated with enlarged cerebral ventricles, cerebellar hypoplasia, seizures and ataxia. Eur J Hum Genet. 1999;7(5):541–8.

    CAS  PubMed  Google Scholar 

  44. Patel S, Barkovich AJ. Analysis and classification of cerebellar malformations. AJNR Am J Neuroradiol. 2002;23(7):1074–87.

    PubMed  PubMed Central  Google Scholar 

  45. Massoud M, et al. Prenatal unilateral cerebellar hypoplasia in a series of 26 cases: significance and implications for prenatal diagnosis. Ultrasound Obstet Gynecol. 2014;44(4):447–54.

    CAS  PubMed  Google Scholar 

  46. Wichman A, Frank LM, Kelly TE. Autosomal recessive congenital cerebellar hypoplasia. Clin Genet. 1985;27(4):373–82.

    CAS  PubMed  Google Scholar 

  47. Osenbach RK, Menezes AH. Diagnosis and management of the Dandy-Walker malformation: 30 years of experience. Pediatr Neurosurg. 1992;18(4):179–89.

    CAS  PubMed  Google Scholar 

  48. Cueva-Nunez JE, et al. Dandy-Walker variant: case report. Rev Chil Pediatr. 2016;87(5):406–10.

    PubMed  Google Scholar 

  49. Klein JL, et al. Clinical and neuroimaging features as diagnostic guides in neonatal neurology diseases with cerebellar involvement. Cerebellum Ataxias. 2016;3:1.

    PubMed  PubMed Central  Google Scholar 

  50. Grinberg I, et al. Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy-Walker malformation. Nat Genet. 2004;36(10):1053–5.

    CAS  PubMed  Google Scholar 

  51. Aldinger KA, et al. FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nat Genet. 2009;41(9):1037–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Parisi MA, Dobyns WB. Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab. 2003;80(1–2):36–53.

    CAS  PubMed  Google Scholar 

  53. Kim JH, et al. Impulsive behavior and recurrent major depression associated with Dandy-Walker variant. Psychiatry Investig. 2013;10(3):303–5.

    PubMed  PubMed Central  Google Scholar 

  54. Abdel Razek AA, Castillo M. Magnetic resonance imaging of malformations of midbrain-hindbrain. J Comput Assist Tomogr. 2016;40(1):14–25.

    PubMed  Google Scholar 

  55. Cotes C, et al. Congenital basis of posterior fossa anomalies. Neuroradiol J. 2015;28(3):238–53.

    PubMed  PubMed Central  Google Scholar 

  56. D’Agostino AN, Kernohan JW, Brown JR. The Dandy-Walker syndrome. J Neuropathol Exp Neurol. 1963;22:450–70.

    PubMed  Google Scholar 

  57. Hart MN, Malamud N, Ellis WG. The Dandy-Walker syndrome. A clinicopathological study based on 28 cases. Neurology. 1972;22(8):771–80.

    CAS  PubMed  Google Scholar 

  58. Spennato P, et al. Hydrocephalus in Dandy-Walker malformation. Childs Nerv Syst. 2011;27(10):1665–81.

    PubMed  Google Scholar 

  59. Nelson MD Jr, Maher K, Gilles FH. A different approach to cysts of the posterior fossa. Pediatr Radiol. 2004;34(9):720–32.

    PubMed  Google Scholar 

  60. Tonni G, et al. Complete trisomy 9 with unusual phenotypic associations: Dandy-Walker malformation, cleft lip and cleft palate, cardiovascular abnormalities. Taiwan J Obstet Gynecol. 2014;53(4):592–7.

    PubMed  Google Scholar 

  61. Zaki MS, et al. Dandy-Walker malformation, genitourinary abnormalities, and intellectual disability in two families. Am J Med Genet A. 2015;167A(11):2503–7.

    PubMed  PubMed Central  Google Scholar 

  62. Klein O, et al. Dandy-Walker malformation: prenatal diagnosis and prognosis. Childs Nerv Syst. 2003;19(7–8):484–9.

    CAS  PubMed  Google Scholar 

  63. Sasaki-Adams D, et al. The Dandy-Walker variant: a case series of 24 pediatric patients and evaluation of associated anomalies, incidence of hydrocephalus, and developmental outcomes. J Neurosurg Pediatr. 2008;2(3):194–9.

    PubMed  Google Scholar 

  64. Guibaud L, et al. Prenatal diagnosis of 'isolated' Dandy-Walker malformation: imaging findings and prenatal counselling. Prenat Diagn. 2012;32(2):185–93.

    PubMed  Google Scholar 

  65. Joubert M, et al. Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation. Neurology. 1969;19(9):813–25.

    CAS  Google Scholar 

  66. Valente EM, Dallapiccola B, Bertini E. Joubert syndrome and related disorders. Handb Clin Neurol. 2013;113:1879–88.

    PubMed  Google Scholar 

  67. Usta M, et al. Joubert syndrome and related disorders: a rare cause of intrahepatic portal hypertension in childhood. Eur Rev Med Pharmacol Sci. 2015;19(12):2297–300.

    CAS  PubMed  Google Scholar 

  68. Sattar S, Gleeson JG. The ciliopathies in neuronal development: a clinical approach to investigation of Joubert syndrome and Joubert syndrome-related disorders. Dev Med Child Neurol. 2011;53(9):793–8.

    PubMed  PubMed Central  Google Scholar 

  69. Chizhikov VV, et al. Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J Neurosci. 2007;27(36):9780–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Spassky N, et al. Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev Biol. 2008;317(1):246–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bachmann-Gagescu R, et al. The ciliopathy protein CC2D2A associates with NINL and functions in RAB8-MICAL3-regulated vesicle trafficking. PLoS Genet. 2015;11(10):e1005575.

    PubMed  PubMed Central  Google Scholar 

  72. Brancati F, et al. MKS3/TMEM67 mutations are a major cause of COACH syndrome, a Joubert syndrome related disorder with liver involvement. Hum Mutat. 2009;30(2):E432–42.

    PubMed  PubMed Central  Google Scholar 

  73. Kamdar BB, et al. Self-reported sleep and breathing disturbances in Joubert syndrome. Pediatr Neurol. 2011;45(6):395–9.

    PubMed  Google Scholar 

  74. Brancati F, Dallapiccola B, Valente EM. Joubert syndrome and related disorders. Orphanet J Rare Dis. 2010;5:20.

    PubMed  PubMed Central  Google Scholar 

  75. Nag C, et al. Joubert syndrome: the molar tooth sign of the mid-brain. Ann Med Health Sci Res. 2013;3(2):291–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lopez Ruiz P, et al. Uncrossed epileptic seizures in Joubert syndrome. BMJ Case Rep. 2015; 2015.

    Google Scholar 

  77. Bierhals T, et al. Pontocerebellar hypoplasia type 2 and TSEN2: review of the literature and two novel mutations. Eur J Med Genet. 2013;56(6):325–30.

    PubMed  Google Scholar 

  78. Sanchez-Albisua I, et al. Natural course of pontocerebellar hypoplasia type 2A. Orphanet J Rare Dis. 2014;9:70.

    PubMed  PubMed Central  Google Scholar 

  79. Millen KJ, Gleeson JG. Cerebellar development and disease. Curr Opin Neurobiol. 2008;18(1):12–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Eggens VR, et al. EXOSC3 mutations in pontocerebellar hypoplasia type 1: novel mutations and genotype-phenotype correlations. Orphanet J Rare Dis. 2014;9:23.

    PubMed  PubMed Central  Google Scholar 

  81. Rudnik-Schoneborn S, et al. Extended phenotype of pontocerebellar hypoplasia with infantile spinal muscular atrophy. Am J Med Genet A. 2003;117A(1):10–7.

    PubMed  Google Scholar 

  82. Renbaum P, et al. Spinal muscular atrophy with pontocerebellar hypoplasia is caused by a mutation in the VRK1 gene. Am J Hum Genet. 2009;85(2):281–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wan J, et al. Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat Genet. 2012;44(6):704–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Budde BS, et al. tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nat Genet. 2008;40(9):1113–8.

    CAS  PubMed  Google Scholar 

  85. Samanta D, Willis E. Intractable epileptic spasms in a patient with pontocerebellar hypoplasia: severe phenotype of type 2 or another subtype? Ann Indian Acad Neurol. 2016;19(3):385–7.

    PubMed  PubMed Central  Google Scholar 

  86. Feinstein M, et al. VPS53 mutations cause progressive cerebello-cerebral atrophy type 2 (PCCA2). J Med Genet. 2014;51(5):303–8.

    CAS  PubMed  Google Scholar 

  87. Rajab A, et al. A novel form of pontocerebellar hypoplasia maps to chromosome 7q11-21. Neurology. 2003;60(10):1664–7.

    CAS  PubMed  Google Scholar 

  88. Edvardson S, et al. Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet. 2007;81(4):857–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Anderson C, et al. Early pontocerebellar hypoplasia with vanishing testes: a new syndrome? Am J Med Genet A. 2011;155A(4):667–72.

    PubMed  Google Scholar 

  90. Namavar Y, et al. Classification, diagnosis and potential mechanisms in pontocerebellar hypoplasia. Orphanet J Rare Dis. 2011;6:50.

    PubMed  PubMed Central  Google Scholar 

  91. Mochida GH, et al. CHMP1A encodes an essential regulator of BMI1-INK4A in cerebellar development. Nat Genet. 2012;44(11):1260–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Akizu N, et al. AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder. Cell. 2013;154(3):505–17.

    CAS  PubMed  Google Scholar 

  93. Karaca E, et al. Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell. 2014;157(3):636–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wan J, et al. Loss of function of SLC25A46 causes lethal congenital pontocerebellar hypoplasia. Brain. 2016;139:2877–90.

    Google Scholar 

  95. Christiansen S, Roos LK, Miranda MJ. Pontocerebellar hypoplasia is a rare cause of floppy infant syndrome. Ugeskr Laeger. 2015;177(40):V05150380.

    PubMed  Google Scholar 

  96. Ishak GE, et al. Rhombencephalosynapsis: a hindbrain malformation associated with incomplete separation of midbrain and forebrain, hydrocephalus and a broad spectrum of severity. Brain. 2012;135(Pt 5):1370–86.

    PubMed  PubMed Central  Google Scholar 

  97. Pasquier L, et al. Rhombencephalosynapsis and related anomalies: a neuropathological study of 40 fetal cases. Acta Neuropathol. 2009;117(2):185–200.

    PubMed  Google Scholar 

  98. Sukhudyan B, et al. Gomez-Lopez-Hernandez syndrome: reappraisal of the diagnostic criteria. Eur J Pediatr. 2010;169(12):1523–8.

    PubMed  Google Scholar 

  99. Gomez MR. Cerebellotrigeminal and focal dermal dysplasia: a newly recognized neurocutaneous syndrome. Brain Dev. 1979;1(4):253–6.

    CAS  PubMed  Google Scholar 

  100. Lopez-Hernandez A. Craniosynostosis, ataxia, trigeminal anaesthesia and parietal alopecia with pons-vermis fusion anomaly (atresia of the fourth ventricle). Report of two cases. Neuropediatrics. 1982;13(2):99–102.

    CAS  PubMed  Google Scholar 

  101. Kruer MC, et al. Truncal ataxia, hypotonia, and motor delay with isolated rhombencephalosynapsis. Pediatr Neurol. 2009;41(3):229–31.

    PubMed  Google Scholar 

  102. Ross ME, Swanson K, Dobyns WB. Lissencephaly with cerebellar hypoplasia (LCH): a heterogeneous group of cortical malformations. Neuropediatrics. 2001;32(5):256–63.

    CAS  PubMed  Google Scholar 

  103. al Shahwan SA, Bruyn GW, al Deeb SM. Non-progressive familial congenital cerebellar hypoplasia. J Neurol Sci. 1995;128(1):71–7.

    PubMed  Google Scholar 

  104. Hong SE, et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet. 2000;26(1):93–6.

    CAS  PubMed  Google Scholar 

  105. Kroon AA, et al. Lissencephaly with extreme cerebral and cerebellar hypoplasia. A magnetic resonance imaging study. Neuropediatrics. 1996;27(5):273–6.

    CAS  PubMed  Google Scholar 

  106. D’Arcangelo G, et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature. 1995;374(6524):719–23.

    PubMed  Google Scholar 

  107. D’Arcangelo G, et al. Reelin is a ligand for lipoprotein receptors. Neuron. 1999;24(2):471–9.

    PubMed  Google Scholar 

  108. Hiesberger T, et al. Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron. 1999;24(2):481–9.

    CAS  PubMed  Google Scholar 

  109. Trommsdorff M, et al. Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell. 1999;97(6):689–701.

    CAS  PubMed  Google Scholar 

  110. Senzaki K, Ogawa M, Yagi T. Proteins of the CNR family are multiple receptors for Reelin. Cell. 1999;99(6):635–47.

    CAS  PubMed  Google Scholar 

  111. Caviness VS Jr, Rakic P. Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci. 1978;1:297–326.

    PubMed  Google Scholar 

  112. Lambert de Rouvroit C, Goffinet AM. The reeler mouse as a model of brain development. Adv Anat Embryol Cell Biol. 1998;150:1–106.

    CAS  PubMed  Google Scholar 

  113. Yis U. Lissencephaly with brainstem and cerebellar hypoplasia and congenital cataracts. J Child Neurol. 2015;30(5):625–6.

    PubMed  Google Scholar 

  114. Klisch J, et al. Lhermitte-Duclos disease: assessment with MR imaging, positron emission tomography, single-photon emission CT, and MR spectroscopy. AJNR Am J Neuroradiol. 2001;22(5):824–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Shinagare AB, Patil NK, Sorte SZ. Case 144: dysplastic cerebellar gangliocytoma (Lhermitte-Duclos disease). Radiology. 2009;251(1):298–303.

    PubMed  Google Scholar 

  116. Zhou XP, et al. Germline inactivation of PTEN and dysregulation of the phosphoinositol-3-kinase/Akt pathway cause human Lhermitte-Duclos disease in adults. Am J Hum Genet. 2003;73(5):1191–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998;273(22):13375–8.

    CAS  PubMed  Google Scholar 

  118. Roessmann U, Wongmongkolrit T. Dysplastic gangliocytoma of cerebellum in a newborn. Case report. J Neurosurg. 1984;60(4):845–7.

    CAS  PubMed  Google Scholar 

  119. Vieco PT, et al. Dysplastic gangliocytoma (Lhermitte-Duclos disease): CT and MR imaging. Pediatr Radiol. 1992;22(5):366–9.

    CAS  PubMed  Google Scholar 

  120. Milbouw G, et al. Clinical and radiological aspects of dysplastic gangliocytoma (Lhermitte-Duclos disease): a report of two cases with review of the literature. Neurosurgery. 1988;22(1 Pt 1):124–8.

    CAS  PubMed  Google Scholar 

  121. Ashley DG, et al. Lhermitte-Duclos disease: CT and MR findings. J Comput Assist Tomogr. 1990;14(6):984–7.

    CAS  PubMed  Google Scholar 

  122. Nowak DA, Trost HA. Lhermitte-Duclos disease (dysplastic cerebellar gangliocytoma): a malformation, hamartoma or neoplasm? Acta Neurol Scand. 2002;105(3):137–45.

    CAS  PubMed  Google Scholar 

  123. Padberg GW, et al. Lhermitte-Duclos disease and Cowden disease: a single phakomatosis. Ann Neurol. 1991;29(5):517–23.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Marzban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Marzban, A., Vafaee-shahi, M., Azarkhish, K. (2017). Clinical Aspects of the Inherited Cerebellar Malformations. In: Marzban, H. (eds) Development of the Cerebellum from Molecular Aspects to Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-59749-2_19

Download citation

Publish with us

Policies and ethics