Skip to main content

Tricuspid Valve Disease: Imaging Using Transthoracic Echocardiography

  • Chapter
Practical Manual of Tricuspid Valve Diseases

Abstract

Tricuspid valve disease is common but often has less attention than in the left side of the heart. Functional tricuspid regurgitation if left untreated is associated with unfavorable outcome. Moreover, tricuspid valve surgery is often associated with higher complications than for any other surgical valve intervention. Transthoracic echocardiography (TTE) is the gold standard imaging of choice in the assessment of tricuspid valve disease. TTE has many sub modalities such as the M-mode, 2D and 3D modes, the bi-plane mode and the recently introduced iRotate mode. Furthermore, Doppler interrogation of the tricuspid valve as well as blood flow over other cardiac valves, pulmonary, aortic, hepatic venous flow is the mainstay in hemodynamic assessment of patients with tricuspid valve disease. TTE role begins with screening for the presence or absence and type of tricuspid valve disease. Moreover, determination of the etiology, severity of the tricuspid lesion, associated other valvular problems and chamber quantification are part of an imaging protocol/approach, which required for full diagnosis of tricuspid valve disease. Pre-operative and pre-catheter interventional planning can be performed by TTE. Finally, post interventional outcome as well as follow-up is often determined via TTE. In this chapter, we will provide a comprehensive and state-of-the art overview of the use of TTE for the assessment of TV disease. Advantages as well as limitations of each TTE sub modality will be outlined. A perspective on the value of TTE in the era of percutaneous transcatheter TV interventions will also be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anwar AM, Geleijnse ML, Soliman OI, McGhie JS, Frowijn R, Nemes A, van den Bosch AE, Galema TW, Ten Cate FJ. Assessment of normal tricuspid valve anatomy in adults by real-time three-dimensional echocardiography. Int J Cardiovasc Imaging. 2007;23:717–24.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T, Faletra FF, Franke A, Hung J, de Isla LP, Kamp O, Kasprzak JD, Lancellotti P, Marwick TH, McCulloch ML, Monaghan MJ, Nihoyannopoulos P, Pandian NG, Pellikka PA, Pepi M, Roberson DA, Shernan SK, Shirali GS, Sugeng L, Ten Cate FJ, Vannan MA, Zamorano JL, Zoghbi WA, American Society of Echocardiography, European Association of Echocardiography. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012;25:3–46.

    Article  PubMed  Google Scholar 

  3. Anwar AM, Geleijnse ML, Ten Cate FJ, Meijboom FJ. Assessment of tricuspid valve annulus size, shape and function using real-time three-dimensional echocardiography. Interact Cardiovasc Thorac Surg. 2006;5:683–7.

    Article  PubMed  Google Scholar 

  4. Velayudhan DE, Brown TM, Nanda NC, Patel V, Miller AP, Mehmood F, Rajdev S, Fang L, Frans EE, Vengala S, Madadi P, Yelamanchili P, Baysan O. Quantification of tricuspid regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area. Echocardiography. 2006;23:793–800.

    Article  PubMed  Google Scholar 

  5. Mutlak D, Carasso S, Lessick J, Aronson D, Reisner SA, Agmon Y. Excessive respiratory variation in tricuspid regurgitation systolic velocities in patients with severe tricuspid regurgitation. Eur Heart J Cardiovasc Imaging. 2013;14:957–62.

    Article  PubMed  Google Scholar 

  6. Agmon Y, Caspi O. Respiratory variation in tricuspid valve regurgitant orifice: a three-dimensional transthoracic echocardiographic perspective. Eur Heart J Cardiovasc Imaging. 2016;17(10):1188.

    Article  PubMed  Google Scholar 

  7. Dreyfus GD, Chan KM. Functional tricuspid regurgitation: a more complex entity than it appears. Heart. 2009;95:868–9.

    Article  PubMed  Google Scholar 

  8. Dreyfus GD, Martin RP, Chan KM, Dulguerov F, Alexandrescu C. Functional tricuspid regurgitation: a need to revise our understanding. J Am Coll Cardiol. 2015;65:2331–6.

    Article  PubMed  Google Scholar 

  9. Raja SG, Dreyfus GD. Basis for intervention on functional tricuspid regurgitation. Semin Thorac Cardiovasc Surg. 2010;22:79–83.

    Article  PubMed  Google Scholar 

  10. Dreyfus J, Durand-Viel G, Raffoul R, Alkhoder S, Hvass U, Radu C, Al-Attar N, Ghodbhane W, Attias D, Nataf P, Vahanian A, Messika-Zeitoun D. Comparison of 2-dimensional, 3-dimensional, and surgical measurements of the tricuspid annulus size: clinical implications. Circ Cardiovasc Imaging. 2015;8:e003241.

    Article  PubMed  Google Scholar 

  11. Anwar AM, Soliman OI, Nemes A, van Geuns RJ, Geleijnse ML, Ten Cate FJ. Value of assessment of tricuspid annulus: real-time three-dimensional echocardiography and magnetic resonance imaging. Int J Cardiovasc Imaging. 2007;23:701–5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Anwar AM, Geleijnse ML, Soliman OI, McGhie JS, Nemes A, ten Cate FJ. Evaluation of rheumatic tricuspid valve stenosis by real-time three-dimensional echocardiography. Heart. 2007;93:363–4.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Faletra F, La Marchesina U, Bragato R, De Chiara F. Three dimensional transthoracic echocardiography images of tricuspid stenosis. Heart. 2005;91:499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McGhie JS, Menting ME, Vletter WB, Frowijn R, Roos-Hesselink JW, Soliman OI, van der Zwaan HB, Geleijnse ML, van den Bosch AE. A novel 13-segment standardized model for assessment of right ventricular function using two-dimensional iRotate echocardiography. Echocardiography. 2016;33:353–61.

    Article  PubMed  Google Scholar 

  15. McGhie JS, Menting ME, Vletter WB, Frowijn R, Roos-Hesselink JW, van der Zwaan HB, Soliman OI, Geleijnse ML, van den Bosch AE. Quantitative assessment of the entire right ventricle from one acoustic window: an attractive approach. Eur Heart J Cardiovasc Imaging. 2016 Aug 7. pii: jew165. [Epub ahead of print].

    Google Scholar 

  16. Addetia K, Yamat M, Mediratta A, Medvedofsky D, Patel M, Ferrara P, Mor-Avi V, Lang RM. Comprehensive two-dimensional interrogation of the tricuspid valve using knowledge derived from three-dimensional echocardiography. J Am Soc Echocardiogr. 2016;29:74–82.

    Article  PubMed  Google Scholar 

  17. Singh JP, Evans JC, Levy D, Larson MG, Freed LA, Fuller DL, Lehman B, Benjamin EJ. Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). Am J Cardiol. 1999;83:897–902.

    Article  CAS  PubMed  Google Scholar 

  18. Boyaci A, Gokce V, Topaloglu S, Korkmaz S, Goksel S. Outcome of significant functional tricuspid regurgitation late after mitral valve replacement for predominant rheumatic mitral stenosis. Angiology. 2007;58:336–42.

    Article  PubMed  Google Scholar 

  19. Porter A, Shapira Y, Wurzel M, Sulkes J, Vaturi M, Adler Y, Sahar G, Sagie A. Tricuspid regurgitation late after mitral valve replacement: clinical and echocardiographic evaluation. J Heart Valve Dis. 1999;8:57–62.

    CAS  PubMed  Google Scholar 

  20. Izumi C, Iga K, Konishi T. Progression of isolated tricuspid regurgitation late after mitral valve surgery for rheumatic mitral valve disease. J Heart Valve Dis. 2002;11:353–6.

    PubMed  Google Scholar 

  21. Bruce CJ, Connolly HM. Right-sided valve disease deserves a little more respect. Circulation. 2009;119:2726–34.

    Article  PubMed  Google Scholar 

  22. Nath J, Foster E, Heidenreich PA. Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol. 2004;43:405–9.

    Article  PubMed  Google Scholar 

  23. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA, O'Gara PT, Ruiz CE, Skubas NJ, Sorajja P, Sundt TM 3rd, Thomas JD, American College of Cardiology/American Heart Association Task Force on Practice G. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2438–88.

    Article  PubMed  Google Scholar 

  24. Joint Task Force on the Management of Valvular Heart Disease of the European Society of C, European Association for Cardio-Thoracic S, Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Baron-Esquivias G, Baumgartner H, Borger MA, Carrel TP, De Bonis M, Evangelista A, Falk V, Iung B, Lancellotti P, Pierard L, Price S, Schafers HJ, Schuler G, Stepinska J, Swedberg K, Takkenberg J, Von Oppell UO, Windecker S, Zamorano JL, Zembala M. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33:2451–96.

    Article  Google Scholar 

  25. Tribouilloy CM, Enriquez-Sarano M, Bailey KR, Tajik AJ, Seward JB. Quantification of tricuspid regurgitation by measuring the width of the vena contracta with Doppler color flow imaging: a clinical study. J Am Coll Cardiol. 2000;36:472–8.

    Article  CAS  PubMed  Google Scholar 

  26. Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, Nihoyannopoulos P, Otto CM, Quinones MA, Rakowski H, Stewart WJ, Waggoner A, Weissman NJ, American Society of E. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003;16:777–802.

    Article  PubMed  Google Scholar 

  27. Chen TE, Kwon SH, Enriquez-Sarano M, Wong BF, Mankad SV. Three-dimensional color Doppler echocardiographic quantification of tricuspid regurgitation orifice area: comparison with conventional two-dimensional measures. J Am Soc Echocardiogr. 2013;26:1143–52.

    Article  PubMed  Google Scholar 

  28. Rodriguez L, Thomas JD, Monterroso V, Weyman AE, Harrigan P, Mueller LN, Levine RA. Validation of the proximal flow convergence method. Calculation of orifice area in patients with mitral stenosis. Circulation. 1993;88:1157–65.

    Article  CAS  PubMed  Google Scholar 

  29. Rodriguez L, Anconina J, Flachskampf FA, Weyman AE, Levine RA, Thomas JD. Impact of finite orifice size on proximal flow convergence. Implications for Doppler quantification of valvular regurgitation. Circ Res. 1992;70:923–30.

    Article  CAS  PubMed  Google Scholar 

  30. Sugeng L, Weinert L, Lang RM. Real-time 3-dimensional color Doppler flow of mitral and tricuspid regurgitation: feasibility and initial quantitative comparison with 2-dimensional methods. J Am Soc Echocardiogr. 2007;20:1050–7.

    Article  PubMed  Google Scholar 

  31. Mascherbauer J, Maurer G. The forgotten valve: lessons to be learned in tricuspid regurgitation. Eur Heart J. 2010;31:2841–3.

    Article  PubMed  Google Scholar 

  32. Topilsky Y, Tribouilloy C, Michelena HI, Pislaru S, Mahoney DW, Enriquez-Sarano M. Pathophysiology of tricuspid regurgitation: quantitative Doppler echocardiographic assessment of respiratory dependence. Circulation. 2010;122:1505–13.

    Article  PubMed  Google Scholar 

  33. de Agustin JA, Viliani D, Vieira C, Islas F, Marcos-Alberca P, Gomez de Diego JJ, Nunez-Gil IJ, Almeria C, Rodrigo JL, Luaces M, Garcia-Fernandez MA, Macaya C, Perez de Isla L. Proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography applied for tricuspid regurgitation quantification. J Am Soc Echocardiogr. 2013;26:1063–72.

    Article  PubMed  Google Scholar 

  34. Quinones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA, Doppler Quantification Task Force of the N, Standards Committee of the American Society of E. Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr. 2002;15:167–84.

    Article  PubMed  Google Scholar 

  35. Fadel BM, Almulla K, Husain A, Dahdouh Z, Di Salvo G, Mohty D. Spectral Doppler of the hepatic veins in tricuspid valve disease. Echocardiography. 2015;32:856–9.

    Article  PubMed  Google Scholar 

  36. Kim HK, Kim YJ, Park JS, Kim KH, Kim KB, Ahn H, Sohn DW, Oh BH, Park YB, Choi YS. Determinants of the severity of functional tricuspid regurgitation. Am J Cardiol. 2006;98:236–42.

    Article  PubMed  Google Scholar 

  37. Fawzy H, Fukamachi K, Mazer CD, Harrington A, Latter D, Bonneau D, Errett L. Complete mapping of the tricuspid valve apparatus using three-dimensional sonomicrometry. J Thorac Cardiovasc Surg. 2011;141:1037–43.

    Article  PubMed  Google Scholar 

  38. Maffessanti F, Gripari P, Pontone G, Andreini D, Bertella E, Mushtaq S, Tamborini G, Fusini L, Pepi M, Caiani EG. Three-dimensional dynamic assessment of tricuspid and mitral annuli using cardiovascular magnetic resonance. Eur Heart J Cardiovasc Imaging. 2013;14:986–95.

    Article  PubMed  Google Scholar 

  39. Ton-Nu TT, Levine RA, Handschumacher MD, Dorer DJ, Yosefy C, Fan D, Hua L, Jiang L, Hung J. Geometric determinants of functional tricuspid regurgitation: insights from 3-dimensional echocardiography. Circulation. 2006;114:143–9.

    Article  PubMed  Google Scholar 

  40. Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, Hahn RT, Han Y, Hung J, Lang RM, Little SH, Shah DJ, Shernan S, Thavendiranathan P, Thomas JD, Weissman NJ. Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation. J Am Soc Echocardiogr. 2017;30(4):303–71.

    Google Scholar 

  41. Lawrence G. Rudski, Wyman W. Lai, Jonathan Afilalo, Lanqi Hua, Mark D. Handschumacher, Krishnaswamy Chandrasekaran, Scott D. Solomon, Eric K. Louie, Nelson B. Schiller, (2010) Guidelines for the Echocardiographic Assessment of the Right Heart in Adults: A Report from the American Society of Echocardiography. JJ Am Soc Echocardiogr. 23(7):685–713

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama I. Soliman M.D., Ph.D., F.A.C.C., F.E.S.C. .

Editor information

Editors and Affiliations

Electronic Supplementary Material

(MPG 814 kb)

(MPG 842 kb)

(MPG 928 kb)

(MPG 894 kb)

(MPG 1394 kb)

(MPG 1378 kb)

(MPG 962 kb)

(MPG 824 kb)

(MPG 948 kb)

(MPG 932 kb)

(MPG 874 kb)

(MPG 1464 kb)

(MPG 1496 kb)

(MPG 1480 kb)

(MPG 1358 kb)

(MPG 1204 kb)

(MPG 846 kb)

(MPG 396 kb)

(MPG 1502 kb)

(MPG 1404 kb)

(MPG 1502 kb)

(MPG 1078 kb)

(MPG 870 kb)

(MPG 974 kb)

(MPG 932 kb)

(MPG 948 kb)

(MPG 986 kb)

(MPG 868 kb)

(MPG 860 kb)

(MPG 796 kb)

(MPG 884 kb)

(MPG 890 kb)

(MPG 1394 kb)

(MPG 1402 kb)

(MPG 1202 kb)

(MPG 1182 kb)

(MPG 982 kb)

(MPG 1096 kb)

(MPG 974 kb)

(MPG 934 kb)

(MPG 1318 kb)

(MPG 1926 kb)

(MPG 1448 kb)

(MPG 1388 kb)

(MPG 1406 kb)

(MPG 1498 kb)

(MPG 1358 kb)

(MPG 1392 kb)

(MPG 828 kb)

(MPG 1926 kb)

(MPG 844 kb)

(MPG 864 kb)

(MPG 1774 kb)

(MPG 812 kb)

(MPG 1128 kb)

(MPG 1392 kb)

Review Questions

Review Questions

Select the Single Best Sentence

  1. 31.

    Which of the following statements about normal tricuspid anatomy is true?

    1. (a)

      papillary muscles are smaller and widely spaced than in the left ventricle

    2. (b)

      tricuspid valve is less apical than mitral valve

    3. (c)

      right ventricle has two papillary muscles, which are larger than in left ventricle

    4. (d)

      posterior leaflet of the tricuspid valve is the largest of the three leaflets

    5. (e)

      anterior and posterior leaflets are exactly the same size

  2. 32.

    Which of the following statements is correct about the TV leaflets in the apical 4-chamber view?

    1. (a)

      septal leaflet is often identified in 87% of cases

    2. (b)

      septal leaflet is identified in all subjects except in patients with dilated right ventricle

    3. (c)

      septal leaflet is identified in all subjects

    4. (d)

      septal leaflet is identified in all subjects only in the focused apical 4-chamber view

    5. (e)

      posterior leaflet is seen in all subjects in focused RV view

  3. 33.

    Which of the following statements is correct about TV leaflets on 2D-TTE in the parasternal right ventricular inflow view with LV cavity displayed?

    1. (a)

      anterior leaflet is always seen in the near field and the septal leaflet in the far field

    2. (b)

      septal leaflet is identified in all subjects except in patients with dilated right ventricle

    3. (c)

      septal leaflet is identified in all subjects in the near filed

    4. (d)

      posterior leaflet is identified in all subjects in the far field

    5. (e)

      both anterior and posterior leaflets could be seen if transducer is posteriorly tilt to exclude the LV cavity

  4. 34.

    Which of the following statements about TV leaflets on 2D-TTE in the standard parasternal short-axis view are not correct (check all that apply)?

    1. (a)

      the leaflet to the next to aorta is the anterior leaflet in 50% of cases

    2. (b)

      the leaflet next to aorta is the septal leaflet in 50% of cases

    3. (c)

      the leaflet next to aorta is the septal leaflet in 100% of cases

    4. (d)

      the leaflet next attached to RV free is the anterior leaflet in almost 100% of cases

    5. (e)

      the leaflet next attached to RV free is the posterior leaflet in almost 100% of cases

  1. 35.

    Which of the following parameters/modalities is adequate for the assessment of tricuspid valve regurgitation severity grade?

    1. (a)

      Color Doppler of tricuspid regurgitation jet

    2. (b)

      Continuous-wave Doppler of tricuspid regurgitation jet

    3. (c)

      Pulsed-wave Doppler of tricuspid regurgitation jet

    4. (d)

      2D-TEE of annulus enlargement and chamber dilatation

    5. (e)

      All of the above must be combined together for a reliable assessment of TR severity

  2. 36.

    Which of the following statements are correct regarding frame rate?

    1. (a)

      2D-TTE has a higher frame rate than M-mode

    2. (b)

      The biplane simultaneous multiplane imaging has a similar frame rate to 2D-TTE

    3. (c)

      The simultaneous multiplane imaging has a similar frame rate to the iRotate mode

    4. (d)

      The biplane simultaneous multiplane imaging has a higher frame rate to 2D-TTE

    5. (e)

      The iRotate mode has a similar frame rate to 2D-TTE

  3. 37.

    Doppler estimation of tricuspid valve cross-sectional area is based on the concept of:

    1. (a)

      conservation of energy theory

    2. (b)

      conservation of mass theory

    3. (c)

      flow augmentation theory

    4. (d)

      Simpson’s formula

    5. (e)

      Cubic formula

  4. 38.

    Which of the following is not a sign of a hemodynamically significant tricuspid stenosis?

    1. (a)

      Mean pressure gradient of 5 or more mmHg

    2. (b)

      Right ventricular inflow velocity time integral of 60 or more cm

    3. (c)

      Right ventricular inflow pressure half time of 190 or more

    4. (d)

      tricuspid valve area of less than 1 cm2

    5. (e)

      dilated right ventricular, and smaller right atrial volume

  5. 39.

    Which of the following is not a sign of a severe tricuspid regurgitation?

    1. (a)

      Right ventricular eccentricity index of 1.4

    2. (b)

      TR jet color area more than 10 cm2 or >30% of RA area

    3. (c)

      TR jet vena contracta width more than 7 mm

    4. (d)

      TR jet PISA radium of more than 9 mm

    5. (e)

      TR effective regurgitant orifice area of 40 or more mm2

  6. 40.

    Which of the following statements is false regarding tricuspid leaflets coaptation?

    1. (a)

      Normal coaptation height is seen at the level of the annulus or just below it.

    2. (b)

      Is considered normal if the coaptation length of 5–10 mm.

    3. (c)

      Leaflet tethering is considered present if the tenting distance >8 mm.

    4. (d)

      Leaflet tethering is considered present if the tenting area > 1.6 cm2.

    5. (e)

      The coaptation height is often larger than coaptation length.

  7. 41.

    Regarding functional tricuspid regurgitation, which of the following statements is false?

    1. (a)

      Is the most common form of TR, which occur in almost 80% of all TR

    2. (b)

      Annuloplasty is enough to treat patients with tricuspid annulus of more than 40 mm and absent leaflet coaptation

    3. (c)

      Some patients with mild TR could be surgically treated if tricuspid annulus is more than 40 mm

    4. (d)

      Patients with tricuspid annulus of more than 40 mm and edge-to-edge leaflet coaptation are treated with Annuloplasty

    5. (e)

      Patients with tricuspid annulus of more than 21 mm/m2 and edge-to-edge leaflet coaptation are treated with Annuloplasty

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Soliman, O.I., McGhie, J., Anwar, A.M., Strachinaru, M., Geleijnse, M.L., ten Cate, F.J. (2018). Tricuspid Valve Disease: Imaging Using Transthoracic Echocardiography. In: Soliman, O.I., ten Cate, F.J. (eds) Practical Manual of Tricuspid Valve Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-58229-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58229-0_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58228-3

  • Online ISBN: 978-3-319-58229-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics