Skip to main content
  • 391 Accesses

Abstract

Dangerous marine fishes have always created a challenge for coastal human societies such as fishing communities. These fishes are typically classified into five main categories, with subdivision of some categories: predators, biting, harmful, venomous, and poisonous. Venomous fishes are those capable of producing venom in specialised tissues or glands that are connected with application structures (e.g., stings), unlike poisonous fishes that usually produce poisons in nonspecialised tissues or accumulate them after ingestion of prey or algae and may be dangerous to people who consume them (Spanier 1987; Russell 1996). The number of attacks, envenomation, and toxication by dangerous fishes has increased in recent years; the increased use of skin and scuba diving as leisure activities has led to an increase in the number of admissions to emergency departments (Atkinson et al. 2006). Yet, very limited research has been done around the world to estimate the magnitude of these injuries inflicted by marine fishes. In countries such as Australia, it was found that fish (including stingrays) constituted the taxonomic group causing the highest rate of injury (62.9%). In the Australian study 8.3% of the cases required hospitalisation, and most of the injuries occurred as a result of sport and leisure activities (65.9%; Taylor et al. 2002). Such a survey has not been applied in many other countries thus far. Such studies will assess the prevalence of injuries caused by dangerous marine fishes along the coastal areas to describe the medical aspects of the injuries in order to identify causes of hazard and recommend prevention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Atkinson PRT, Boyle D, Hartin D, Mcauley D. Is hot water immersion an effective treatment for marine envenomation? Emerg Med J. 2006;23:503–8.

    Article  CAS  Google Scholar 

  • Beydoun ZR. Arabian plate oil and gas: why so rich and so prolific? Episodes-Newsmagazine Int Union Geol Sci. 1998;21(2):74–81.

    Google Scholar 

  • Blum SD. Biogeography of the Chaetodontidae: an analysis of allopatry among closely related species. Env Biol Fish. 1989;24(9-3):1.

    Google Scholar 

  • Bolton JJ. Patterns of species diversity and endemism in comparable temperate brown algal floras. Hydrobiologia. 1996;326/327:173–8.

    Article  Google Scholar 

  • Bolton JJ, Leliaert F, De Clerck O, Anderson RJ, Stegenga H, Engledow HE, Coppejans E. Where is the western limit of the tropical Indian Ocean seaweed flora? An analysis of intertidal seaweed biogeography on the east coast of South Africa. Mar Biol. 2004;144:51–60.

    Article  Google Scholar 

  • Briggs JC. Marine zoogeography. New York: McGraw-Hill; 1974. p. 475.

    Google Scholar 

  • Britannica Online Encyclopaedia. Retrieved 21 Mar 2016.

    Google Scholar 

  • Burt J, Al-Harthi S, Al-Cibahy A. Long-term impacts of coral bleaching events on the world’s warmest reefs. Mar Environ Res. 2011;72(4):225–9.

    Article  CAS  Google Scholar 

  • Burt J, Bartholomew A, Usseglio P. Recovery of corals a decade after a bleaching event in Dubai, United Arab Emirates. Mar Biol. 2008;154(1):27–36.

    Article  Google Scholar 

  • Burt J, Bartholomew A, Usseglio P, Bauman A, Sale PF. Are artificial reefs surrogates of natural habitats for corals and fish in Dubai, United Arab Emirates? Coral Reefs. 2009;28(3):663–75.

    Article  Google Scholar 

  • Byrne DE, Sykes LR, Davis DM. Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone. J Geophys Res Solid Earth. 1992;97(B1):449–78.

    Article  Google Scholar 

  • Carpenter KE, Krupp F, Jones DA, Zajonz U. FAO species identification field guide for fishery purposes: the living marine resources of Kuwait, Eastern Saudi Arabia, Bahrain, Qatar, and the United Arab Emirates. Rome: Food and Agriculture Organization of the United Nations; 1997.

    Google Scholar 

  • Coles SL. Reef corals occurring in a highly fluctuating temperature environment at Fahal Island, Gulf of Oman (Indian Ocean). Coral Reefs. 1997;16(4):269–72.

    Article  Google Scholar 

  • Coles SL. Coral species diversity and environmental factors in the Arabian Gulf and the Gulf of Oman: a comparison to the Indo-Pacific region. Washington, DC: National Museum of Natural History, Smithsonian Institution; 2003.

    Google Scholar 

  • Coles SL, Tarr BA. Reef fish assemblages in the western Arabian Gulf: a geographically isolated population in an extreme environment. Bull Mar Sci. 1990;47(3):696–720.

    Google Scholar 

  • Delphi M, Mosaddad SM. Formation of summer thermocline in the Persian Gulf. Int J Environ Sci Dev. 2010;1(5):429.

    Article  Google Scholar 

  • Ellingsen K. Spatial patterns of benthic diversity: is there a latitudinal gradient along the Norwegian continental shelf? J Anim Ecol. 2002;71(3):373–89.

    Article  Google Scholar 

  • Engel M, May SM. Bonaire’s boulder fields revisited: evidence for Holocene tsunami impact on the Leeward Antilles. Quaternary Sci Rev. 2012;54:126–41.

    Article  Google Scholar 

  • Etienne S, Buckley M, Paris R, Nandasena AK, Clark K, Strotz L, Chagué-Goff C, Goff J, Richmond B. The use of boulders for characterising past tsunamis: lessons from the 2004 Indian Ocean and 2009 South Pacific tsunamis. Earth Sci Rev. 2011;107:76–90.

    Article  Google Scholar 

  • Feary DA, Burt JA, Bauman AG, Usseglio P, Sale PF, Cavalcante GH. Fish communities on the world’s warmest reefs: what can they tell us about the effects of climate change in the future? J Fish Biol. 2010;77(8):1931–47.

    Article  CAS  Google Scholar 

  • Glennie KW, Clarke MH, Boeuf MGA, Pilaar WFH, Reinhardt BM. Inter-relationship of Makran-Oman mountains belts of convergence. Geol Soc Lond Spec Publ. 1990;49(1):773–86.

    Article  Google Scholar 

  • Head SM. Introduction. In: Edwards AJ, Head SM, editors. Red Sea. Oxford: Pergamon Press; 1987. p. 1–21. Figs. 1.1–1.8.

    Google Scholar 

  • Hoffmann G, Archibong EO, Abrantes F. INQUA commission on coastal and marine processes: president’s report for 2012. Nature. 2012;5:607–13.

    Google Scholar 

  • Hoffmann G, Reicherter K, Wiatr T, Grützner C, Rausch T. Block and boulder accumulations along the coastline between Fins and Sur (Sultanate of Oman): tsunamigenic remains? Nat Hazards. 2013;65(1):851–73.

    Article  Google Scholar 

  • Humm HJ. Distribution of marine algae along the Atlantic coast of North America. Phycologia. 1969;7:43–53.

    Article  Google Scholar 

  • Jacob KH, Quittmeyer RL. The Makran region of Pakistan and Iran: Trench-arc system with active plate subduction. Geodyn Pak. 1979;3:305–18.

    Google Scholar 

  • Kemp J. Zoogeography of the coral reef fishes of the Socotra Archipelago. J Biogeogr. 1998;25(5):919–33.

    Article  Google Scholar 

  • Klausewitz W. The zoogeographical and paleogeographical problems of the Indian Ocean and the Red Sea according to the ichthyofauna of the littoral. J Mar Biol Assoc India. 1972;14:697–706.

    Google Scholar 

  • Klausewitz W. Evolutionary history and zoogeography of the Red Sea ichthyofauna. Fauna Saudi Arab. 1989;10:310–37.

    Google Scholar 

  • Konyuhov AI, Maleki B. The Persian Gulf basin: geological history, sedimentary formations, and petroleum potential. Lithol Miner Resour. 2006;41(4):344–61.

    Article  CAS  Google Scholar 

  • Krupp F, Al-Marri MA. Fishes and fish assemblages of the Jubail marine wildlife sanctuary. In: Krupp F, Abuzinda AH, Nader IA, editors. A marine wildlife sanctuary for the Arabian Gulf: environmental research and conservation following the 1991 Gulf War oil spill. Brussels: European Commission; 1996. p. 339–350.

    Google Scholar 

  • Lambeck K. Shoreline reconstructions for the Persian Gulf since the last glacial maximum. Earth Planet Sci Lett. 1996;142(1):43–57.

    Article  CAS  Google Scholar 

  • Lehr WJ. A brief survey of oceanographic modelling and oil spill studies in the KAP region. In: El-Sabh MI, editor. Oceanographic modeling of the Kuwait Action Plan (KAP) region. UNESCO reports in Marine Science, 28. Paris: UNESCO; 1984. p. 4–11.

    Google Scholar 

  • Manilo LG, Bogorodsky SV. Taxonomic composition, diversity and distribution of coastal fishes of the Arabian Sea. J Ichthyol. 2003;43(1):S75.

    Google Scholar 

  • Mokhtari M, Fard IA, Hessami K. Structural elements of the Makran region, Oman sea and their potential relevance to tsunamigenisis. Nat Hazards. 2008;47(2):185–99.

    Article  Google Scholar 

  • Morgan JR. Arabian sea. Encyclopaedia britannica. 2016. http://www.britannica.com/place/Arabian-Sea

  • Munday PL, Jones GP. The ecological implications of small body size among coral reef fishes. Oceanogr Mar Biol Annu Rev. 1998;36:373–411.

    Google Scholar 

  • Murray SN, Littler MM. Biogeographical analysis of intertidal macrophyte floras of southern California. J Biogeogr. 1981;8:339–51.

    Article  Google Scholar 

  • Ormond R, Edwards A. Red Sea fishes. In: Edwards AJ, Head SM, editors. Key environments. Red Sea. Oxford: Pergamon Press; 1987. p. 251–87.

    Google Scholar 

  • Pillevuit A, Marcoux J, Stampfli G, Baud A. The Oman Exotics: a key to the understanding of the Neotethyan geodynamic evolution. Geodin Acta. 1997;10(5):209–38.

    Article  Google Scholar 

  • Price ARG. Echinoderms of Saudi Arabia. Comparison between echinoderm faunas of Persian Gulf, SE Arabia, Red Sea and Gulfs of Aqaba and Suez. Fauna Saudi Arab. 1982;4:3–21.

    Google Scholar 

  • Price ARG, Sheppard CRC, Roberts CM. The Gulf: its biological setting. Mar Pollut Bull. 1993;27:9–15.

    Article  Google Scholar 

  • Price ARG, Donlan MC, Sheppard CRC, Munawar M. Environmental rejuvenation of the Gulf by compensation and restoration. Aquat Ecosyst Health Manag. 2012;15(sup1):7–13.

    Article  Google Scholar 

  • Purkis SJ, Riegl B. Spatial and temporal dynamics of Arabian Gulf coral assemblages quantified from remote-sensing and in situ monitoring data. Mar Ecol Prog Ser. 2005;287:99–113.

    Article  Google Scholar 

  • Randall JE. Coastal fishes of Oman. Honolulu: University of Hawaii Press; 1995.

    Google Scholar 

  • Randall JE. Caribbean reef fishes. 3rd ed. Neptune City: TFH Publications; 1996. 368 pp.

    Google Scholar 

  • Randall JE, Hoover JP. Scarus zufar, a new species of parrotfish from southern Oman, with comments on endemism of the area. Copeia. 1995;1995:683–8.

    Article  Google Scholar 

  • Reynolds RM. Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—results from the Mt Mitchell expedition. Mar Pollut Bull. 1993;27:35–59.

    Article  Google Scholar 

  • Rezai H, Wilson S, Claereboudt M, Riegl B. Coral reef status in the ROPME sea area: Arabian/Persian Gulf, Gulf of Oman and Arabian Sea. Status Coral Reefs World. 2004;1:155–70.

    Google Scholar 

  • Riegl B. Corals in a non-reef setting in the southern Arabian Gulf (Dubai, UAE): fauna and community structure in response to recurring mass mortality. Coral Reefs. 1999;18(1):63–73.

    Article  Google Scholar 

  • Riegl B. Effects of the 1996 and 1998 positive sea-surface temperature anomalies on corals, coral diseases and fish in the Arabian Gulf (Dubai, UAE). Mar Biol. 2002;140:29–40. doi:10.1007/s002270100676.

    Article  Google Scholar 

  • Riegl B. Climate change and coral reefs: different effects in two high-latitude areas (Arabian Gulf, South Africa). Coral Reefs. 2003;22(4):433–46.

    Article  Google Scholar 

  • Roberts CM, Shepherd ARD, Ormond RF. Large-scale variation in assemblage structure of Red Sea butterflyfishes and angelfishes. J Biogeogr. 1992;19:239–50.

    Article  Google Scholar 

  • Robertson AHF, Searle MP. The northern Oman Tethyan continental margin: stratigraphy, structure, concepts and controversies. Geol Soc Lond Spec Publ. 1990;49(1):3–25.

    Article  Google Scholar 

  • Ross JP. Biology of the green turtle, Chelonia mydas, on an Arabian feeding ground. J Herpetol. 1985;19:459–68.

    Article  Google Scholar 

  • Russell FE. The venomous and poisonous marine invertebrates of the Indian Ocean. Enfield, NH: Science Publishers; 1996. p. 1–14.

    Google Scholar 

  • Schils T, Wilson SC. Temperature threshold as a biogeographic barrier in Northern Indian Ocean macroalgae. J Phycol. 2006;42(4):749–56.

    Article  Google Scholar 

  • Shah-hosseini M, Morhange C, Beni AN, Marriner N, Lahijani H, Hamzeh M, Sabatier F. Coastal boulders as evidence for high-energy waves on the Iranian coast of Makran. Mar Geol. 2011;290(1):17–28.

    Article  Google Scholar 

  • Sheppard CRC. Coral species of the Indian Ocean and adjacent seas: a synonymized compilation and some regional distribution patterns. Atoll Res Bull. 1987;307:1–32.

    Google Scholar 

  • Sheppard CRC, Salm RV. Reef and coral communities of Oman, with a description of a new coral species (Order Scleractinia, genus Acanthastrea). J Nat Hist. 1988;22:263–79.

    Article  Google Scholar 

  • Sheppard CRC, Sheppard ALS. Corals and coral communities of Arabia. In: Buttiker W, Krupp F, editors. Fauna of Saudi Arabia, vol. 12. Basle, Switzerland: Natural History Museum; 1991.

    Google Scholar 

  • Sheppard CRC, Price ARG, Roberts CM. Marine ecology of the Arabian region. New York: Academic; 1992a.

    Google Scholar 

  • Sheppard C, Price A, Roberts C. Marine ecology of the Arabian region: patterns and processes in extreme tropical environments. London: Academic; 1992b.

    Google Scholar 

  • Sheppard CRC, Wilson SC, Salm RV, Dixon D. Reefs and coral communities of the Arabian Gulf and Arabian Sea. In: McClanahan TR, Sheppard CRC, Obura DO, editors. Coral reefs of the Indian Ocean: their ecology and conservation. New York: Oxford University Press; 2000.

    Google Scholar 

  • Sheppard CR. Biodiversity patterns in Indian Ocean corals, and effects of taxonomic error in data. Biodivers Conserv. 1998;7(7):847–68.

    Article  Google Scholar 

  • Smith G, Saleh M, Sangoor K. The reef ichthyofauna of Bahrain (Arabian Gulf) with comments on its zoogeographic affinities. Arab Gulf J Sci Res Agric Biol Sci. 1987;5(1):127–46.

    Google Scholar 

  • Snelgrove PVR. The biodiversity of macrofaunal organisms in marine sediments. Biodivers Conserv. 1998;7(9):1123–32.

    Article  Google Scholar 

  • Snelgrove PVR. Getting to the bottom of marine biodiversity: Sedimentary habitats: Ocean bottoms are the most widespread habitat on earth and support high biodiversity and key ecosystem services. BioScience. 1999;49(2):129–38.

    Article  Google Scholar 

  • Spanier E. Dangerous marine organisms in the coastal waters. In: Nezer Y, Epstein Y, editors. The way out, the skill to survive. Tel Aviv: Israel Ministry of Defense Publishing Office; 1987. p. 235–74. (In Hebrew).

    Google Scholar 

  • Stewart BD, Jones GP. Associations between the abundance of piscivorous fishes and their prey on coral reefs: implications for prey-fish mortality. Mar Biol. 2001;138(2):383–97.

    Article  Google Scholar 

  • Taylor D, Ashby K, Winkel KD. An analysis of marine animal injuries presenting to an emergency department in Victoria, Australia. Wilderness Environ Med. 2002;13:106–12.

    Article  Google Scholar 

  • Thom R. A gradient in benthic intertidal algal assemblages along the southern California coast. J Phycol. 1980;16:102–8.

    Article  Google Scholar 

  • Thrush SF, Dayton PK. Disturbance to marine benthic habitats by trawling and dredging: implications for marine biodiversity. Annu Rev Ecol Syst. 2002;33:449–73.

    Article  Google Scholar 

  • Watts AB, Koppers AA, Robinson DP. Seamount subduction and earthquakes. Oceanography. 2010;23(1):166–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Jawad, L.A. (2018). Introduction. In: Dangerous Fishes of the Eastern and Southern Arabian Peninsula. Springer, Cham. https://doi.org/10.1007/978-3-319-57926-9_1

Download citation

Publish with us

Policies and ethics