Skip to main content

Tissue Specificity: The Role of Organellar Membrane Nanojunctions in Smooth Muscle Ca2+ Signaling

  • Chapter
  • First Online:
Store-Operated Ca²⁺ Entry (SOCE) Pathways

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 993))

Abstract

In this chapter we examine the importance of cytoplasmic nanojunctions—nanometer scale appositions between organellar membranes including the molecular transporters therein—to the cell signaling machinery, with specific reference to Ca2+ transport and signaling in vascular smooth muscle and endothelial cells. More specifically, we will consider the extent to which quantitative modeling may aid in the development of our understanding of these processes. Testament to the requirement for such approaches lies in the fact that recent studies have provided evermore convincing evidence in support of the view that cytoplasmic nanospaces may be as significant to the process of Ca2+ signaling as the Ca2+ transporters, release channels, and Ca2+-storing organelles themselves. Moreover, the disruption and/or dysfunction of cytoplasmic nanospaces may be central to the origin of certain diseases. By way of introduction, we provide a historical perspective on the identification of smooth muscle cell plasma membrane (PM)-sarcoplasmic reticulum (SR) nanospaces and the early evidence in support of their role in the generation of asynchronous Ca2+ waves. We then summarize how stochastic modeling approaches can aid and guide the development of our understanding of two basic functional steps leading to healthy smooth muscle cell contraction. We furthermore outline how more sophisticated and realistic quantitative stochastic modeling may be employed not only to test working hypotheses, but also to lead in their development in a manner that informs further experimental investigation. Finally, we consider more recently defined nanospaces such as the lysosome-SR junction, by way of demonstrating the importance of quantitative stochastic modeling to our understanding of signaling mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews SS, Addy NJ, Brent R, Arkin AP (2010) Detailed simulations of cell biology with Smoldyn 2.1. PLoS Comput Biol 6(3):e1000705

    Google Scholar 

  • Beard NA, Sakowska MM, Dulhunty AF, Laver DR (2002) Calsequestrin is an inhibitor of skeletal muscle ryanodine receptor calcium release channels. Biophys J 82(1 Pt 1):310–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berra-Romani R, Mazzocco-Spezzia A, Pulina MV, Golovina VA (2008) Ca2+ handling is altered when arterial myocytes progress from a contractile to a proliferative phenotype in culture. Am J Physiol Cell Physiol 295(3):C779–C790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79(3):763–854

    CAS  PubMed  Google Scholar 

  • Blender (2016) blender.org—Home. Available at: http://www.blender.org/

  • Boittin F, Galione A, Evans AM (2002) Nicotinic acid adenine dinucleotide phosphate mediates Ca2+ signals and contraction in arterial smooth muscle via a two-pool mechanism. Circ Res 91(12):1168–1175

    Article  CAS  PubMed  Google Scholar 

  • Boittin FX, Dipp M, Kinnear NP, Galione A, Evans AM (2003) Vasodilation by the calcium-mobilizing messenger cyclic ADP-ribose. J Biol Chem 278(11):9602–9608

    Article  CAS  PubMed  Google Scholar 

  • Boulianne L, Al Assaad S, Dumontier M, Gross WJ (2008) GridCell: a stochastic particle-based biological system simulator. BMC Syst Biol 2:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459(7246):596–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, Gu J, Rosenfeld MA, Pavan WJ, Krizman DB, Nagle J, Polymeropoulos MH, Sturley SL, Ioannou YA, Higgins ME, Comly M, Cooney A, Brown A, Kaneski CR, Blanchette-Mackie EJ, Dwyer NK, Neufeld EB, Chang TY, Liscum L, Strauss JF 3rd, Ohno K, Zeigler M, Carmi R, Sokol J, Markie D, O’Neill RR, van Diggelen OP, Elleder M, Patterson MC, Brady RO, Vanier MT, Pentchev PG, Tagle DA (1997) Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277(5323):228–231

    Article  CAS  PubMed  Google Scholar 

  • ChemCell (2016) Available at: http://www.sandia.gov/

  • Chen SR, Li X, Ebisawa K, Zhang L (1997) Functional characterization of the recombinant type 3 Ca2+ release channel (ryanodine receptor) expressed in HEK293 cells. J Biol Chem 272(39):24234–24246

    Article  CAS  PubMed  Google Scholar 

  • Ching LL, Williams AJ, Sitsapesan R (2000) Evidence for Ca(2+) activation and inactivation sites on the luminal side of the cardiac ryanodine receptor complex. Circ Res 87(3):201–206

    Article  CAS  PubMed  Google Scholar 

  • Clark JH, Kinnear NP, Kalujnaia S, Cramb G, Fleischer S, Jeyakumar LH, Wuytack F, Evans AM (2010) Identification of functionally segregated sarcoplasmic reticulum calcium stores in pulmonary arterial smooth muscle. J Biol Chem 285(18):13542–13549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai JM, Syyong H, Navarro-Dorado J, Redondo S, Alonso M, van Breemen C, Tejerina T (2010) A comparative study of alpha-adrenergic receptor mediated Ca(2+) signals and contraction in intact human and mouse vascular smooth muscle. Eur J Pharmacol 629(1–3):82–88

    Article  CAS  PubMed  Google Scholar 

  • Demaurex N, Distelhorst C (2003) Cell biology. Apoptosis—the calcium connection. Science 300(5616):65–67

    Article  CAS  PubMed  Google Scholar 

  • Devine CE, Somlyo AV, Somlyo AP (1972) Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J Cell Biol 52(3):690–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Giuro CML, Shrestha N, Malli R, Groschner K, van Breemen C, Fameli N (2016) Na+/Ca2+ exchangers and Orai channels jointly refill endoplasmic reticulum (ER) Ca2+ via ER nanojunctions in vascular endothelial cells. bioRxiv. Available at: https://doi.org/10.1101/084285

  • Dode L, Andersen JP, Leslie N, Dhitavat J, Vilsen B, Hovnanian A (2003) Dissection of the functional differences between sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 1 and 2 isoforms and characterization of Darier disease (SERCA2) mutants by steady-state and transient kinetic analyses. J Biol Chem 278(48):47877–47889

    Article  CAS  PubMed  Google Scholar 

  • Elmoselhi AB, Blennerhassett M, Samson SE, Grover AK (1995) Properties of the sarcoplasmic reticulum Ca(2+)-pump in coronary artery skinned smooth muscle. Mol Cell Biochem 151(2):149–155

    Article  CAS  PubMed  Google Scholar 

  • Evans AM, Fameli N, Ogunbayo OA, Duan J, Navarro-Dorado J (2016) From contraction to gene expression: nanojunctions of the sarco/endoplasmic reticulum deliver site- and function-specific calcium signals. Sci China Life Sci 59(8):749–763

    Article  CAS  PubMed  Google Scholar 

  • Fameli N, van Breemen C, Kuo K (2007) A quantitative model for linking Na+/Ca2+ exchanger to SERCA during refilling of the sarcoplasmic reticulum to sustain [Ca2+] oscillations in vascular smooth muscle. Cell Calcium 42(6):565–575

    Article  CAS  PubMed  Google Scholar 

  • Fameli N, Kuo K, van Breemen C (2009) A model for the generation of localized transient [Na+] elevations in vascular smooth muscle. Biochem Biophys Res Commun 389(3):461–465

    Article  CAS  PubMed  Google Scholar 

  • Fameli N, Ogunbayo OA, van Breemen C, Evans AM (2014) Cytoplasmic nanojunctions between lysosomes and sarcoplasmic reticulum are required for specific calcium signaling. F1000Res 3:93

    PubMed  PubMed Central  Google Scholar 

  • Gabella G (1971) Caveolae intracellulares and sarcoplasmic reticulum in smooth muscle. J Cell Sci 8(3):601–609

    CAS  PubMed  Google Scholar 

  • Gilchrist JS, Belcastro AN, Katz S (1992) Intraluminal Ca2+ dependence of Ca2+ and ryanodine-mediated regulation of skeletal muscle sarcoplasmic reticulum Ca2+ release. J Biol Chem 267(29):20850–20856

    CAS  PubMed  Google Scholar 

  • Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23(16):2891–2906

    Article  CAS  PubMed  Google Scholar 

  • GridCell (2016) Available at: http://www.isip.ece.mcgill.ca/research/gridcell/start

  • Györke I, Györke S (1998) Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys J 75(6):2801–2810

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmes ME, Samson SE, Wilson JX, Dixon SJ, Grover AK (2000) Ascorbate transport in pig coronary artery smooth muscle: Na(+) removal and oxidative stress increase loss of accumulated cellular ascorbate. J Vasc Res 37(5):390–398

    Article  CAS  PubMed  Google Scholar 

  • Iino M, Kasai H, Yamazawa T (1994) Visualization of neural control of intracellular Ca2+ concentration in single vascular smooth muscle cells in situ. EMBO J 13(21):5026–5031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inesi G, Sumbilla C, Kirtley ME (1990) Relationships of molecular structure and function in Ca2(+)-transport ATPase. Physiol Rev 70(3):749–760

    CAS  PubMed  Google Scholar 

  • Iversen LL (1973) Catecholamine uptake processes. Br Med Bull 29(2):130–135

    Article  CAS  PubMed  Google Scholar 

  • Jmoudiak M, Futerman AH (2005) Gaucher disease: pathological mechanisms and modern management. Br J Haematol 129(2):178–188

    Article  CAS  PubMed  Google Scholar 

  • Kinnear NP, Boittin FX, Thomas JM, Galione A, Evans AM (2004) Lysosome-sarcoplasmic reticulum junctions. A trigger zone for calcium signaling by nicotinic acid adenine dinucleotide phosphate and endothelin-1. J Biol Chem 279(52):54319–54326

    Article  CAS  PubMed  Google Scholar 

  • Kinnear NP, Wyatt CN, Clark JH, Calcraft PJ, Fleischer S, Jeyakumar LH, Nixon GF, Evans AM (2008) Lysosomes co-localize with ryanodine receptor subtype 3 to form a trigger zone for calcium signalling by NAADP in rat pulmonary arterial smooth muscle. Cell Calcium 44(2):190–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Läuger P (1991) Electrogenic ion pumps. Sinauer, Sunderland, MA

    Google Scholar 

  • Lee CH, Poburko D, Sahota P, Sandhu J, Ruehlmann DO, van Breemen C (2001) The mechanism of phenylephrine-mediated [Ca(2+)](i) oscillations underlying tonic contraction in the rabbit inferior vena cava. J Physiol 534(Pt 3):641–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CH, Poburko D, Kuo KH, Seow CY, van Breemen C (2002) Ca(2+) oscillations, gradients, and homeostasis in vascular smooth muscle. Am J Physiol Heart Circ Physiol 282(5):H1571–H1583

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Kuo KH, Dai J, Leo JM, Seow CY, Breemen Cv (2005) Calyculin-A disrupts subplasmalemmal junction and recurring Ca2+ waves in vascular smooth muscle. Cell Calcium 37(1):9–16

    Google Scholar 

  • Lemos VS, Poburko D, Liao CH, Cole WC, van Breemen C (2007) Na+ entry via TRPC6 causes Ca2+ entry via NCX reversal in ATP stimulated smooth muscle cells. Biochem Biophys Res Commun 352(1):130–134

    Article  CAS  PubMed  Google Scholar 

  • Li P, Chen SR (2001) Molecular basis of Ca(2)+ activation of the mouse cardiac Ca(2)+ release channel (ryanodine receptor). J Gen Physiol 118(1):33–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindemann JP, Jones LR, Hathaway DR, Henry BG, Watanabe AM (1983) beta-Adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles. J Biol Chem 258(1):464–471

    CAS  PubMed  Google Scholar 

  • Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, Churchill GC, Schuchman EH, Galione A, Platt FM (2008) Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14(11):1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Magnier C, Papp B, Corvazier E, Bredoux R, Wuytack F, Eggermont J, Maclouf J, Enouf J (1992) Regulation of sarco-endoplasmic reticulum Ca(2+)-ATPases during platelet-derived growth factor-induced smooth muscle cell proliferation. J Biol Chem 267(22):15808–15815

    CAS  PubMed  Google Scholar 

  • Malli R, Frieden M, Hunkova M, Trenker M, Graier WF (2007) Ca2+ refilling of the endoplasmic reticulum is largely preserved albeit reduced Ca2+ entry in endothelial cells. Cell Calcium 41(1):63–76

    Article  CAS  PubMed  Google Scholar 

  • MCell (2016) MCell Home|Center for Quantitative Biological Simulation. Available at: http://mcell.org/

  • Moore ED, Wasteneys GO (2012) Nanospace biophysics. Editorial. Protoplasma 249(Suppl 1):S1

    Article  PubMed  Google Scholar 

  • Morgan AJ, Davis LC, Wagner SK, Lewis AM, Parrington J, Churchill GC, Galione A (2013) Bidirectional Ca2+ signaling occurs between the endoplasmic reticulum and acidic organelles. J Cell Biol 200(6):789–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noori S, Acherman R, Siassi B, Luna C, Ebrahimi M, Pavlova Z, Ramanathan R (2002) A rare presentation of Pompe disease with massive hypertrophic cardiomyopathy at birth. J Perinat Med 30(6):517–521

    Article  PubMed  Google Scholar 

  • Odermatt A, Kurzydlowski K, MacLennan DH (1996) The vmax of the Ca2+-ATPase of cardiac sarcoplasmic reticulum (SERCA2a) is not altered by Ca2+/calmodulin-dependent phosphorylation or by interaction with phospholamban. J Biol Chem 271(24):14206–14213

    Article  CAS  PubMed  Google Scholar 

  • Paltauf-Doburzynska J, Posch K, Paltauf G, Graier WF (1998) Stealth ryanodine-sensitive Ca2+ release contributes to activity of capacitative Ca2+ entry and nitric oxide synthase in bovine endothelial cells. J Physiol 513(Pt 2):369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136(5):876–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poburko D, Liao CH, Lemos VS, Lin E, Maruyama Y, Cole WC, van Breemen C (2007) Transient receptor potential channel 6-mediated, localized cytosolic [Na+] transients drive Na+/Ca2+ exchanger-mediated Ca2+ entry in purinergically stimulated aorta smooth muscle cells. Circ Res 101(10):1030–1038

    Article  CAS  PubMed  Google Scholar 

  • Poburko D, Fameli N, Kuo KH, van Breemen C (2008) Ca2+ signaling in smooth muscle: TRPC6, NCX and LNats in nanodomains. Channels (Austin) 2(1):10–12

    Article  Google Scholar 

  • Poburko D, Liao CH, van Breemen C, Demaurex N (2009) Mitochondrial regulation of sarcoplasmic reticulum Ca2+ content in vascular smooth muscle cells. Circ Res 104(1):104–112

    Article  CAS  PubMed  Google Scholar 

  • PW Workshop (2010) Nanospace biophysics. Available at: http://pwias.ubc.ca/profile/edwin-moore

  • Raeymaekers L, Eggermont JA, Wuytack F, Casteels R (1990) Effects of cyclic nucleotide dependent protein kinases on the endoplasmic reticulum Ca2+ pump of bovine pulmonary artery. Cell Calcium 11(4):261–268

    Article  CAS  PubMed  Google Scholar 

  • Rizzuto R, Duchen MR, Pozzan T (2004) Flirting in little space: the ER/mitochondria Ca2+ liaison. Sci STKE 2004(215):re1

    PubMed  Google Scholar 

  • Ron I, Horowitz M (2008) Intracellular cholesterol modifies the ERAD of glucocerebrosidase in Gaucher disease patients. Mol Genet Metab 93(4):426–436

    Article  CAS  PubMed  Google Scholar 

  • Smoldyn (2016) Available at: http://www.smoldyn.org

  • Stiles JR, Bartol TM (2001) Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. In: De Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. CRC, Boca Raton, pp 87–127

    Google Scholar 

  • Stiles JR, Van Helden D, Bartol TM Jr, Salpeter EE, Salpeter MM (1996) Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. Proc Natl Acad Sci USA 93(12):5747–5752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne GD, Paul RJ (2003) Effects of organ culture on arterial gene expression and hypoxic relaxation: role of the ryanodine receptor. Am J Physiol Cell Physiol 284(4):C999–C1005

    Article  CAS  PubMed  Google Scholar 

  • Tripathy A, Meissner G (1996) Sarcoplasmic reticulum lumenal Ca2+ has access to cytosolic activation and inactivation sites of skeletal muscle Ca2+ release channel. Biophys J 70(6):2600–2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Breemen C (1977) Calcium requirement for activation of intact aortic smooth muscle. J Physiol 272(2):317–329

    Article  PubMed  PubMed Central  Google Scholar 

  • van Breemen C, Saida K (1989) Cellular mechanisms regulating [Ca2+]i smooth muscle. Annu Rev Physiol 51:315–329

    Article  PubMed  Google Scholar 

  • van Breemen C, Lukeman S, Leijten P, Yamamoto H, Loutzenhiser R (1986) The role of superficial SR in modulating force development induced by Ca entry into arterial smooth muscle. J Cardiovasc Pharmacol 8(Suppl 8):S111–S116

    Article  PubMed  Google Scholar 

  • van Breemen C, Fameli N, Evans AM (2013) Pan-junctional sarcoplasmic reticulum in vascular smooth muscle: nanospace Ca2+ transport for site- and function-specific Ca2+ signalling. J Physiol 591(8):2043–2054

    Article  PubMed  PubMed Central  Google Scholar 

  • Verboomen H, Wuytack F, Van den Bosch L, Mertens L, Casteels R (1994) The functional importance of the extreme C-terminal tail in the gene 2 organellar Ca(2+)-transport ATPase (SERCA2a/b). Biochem J 303(Pt 3):979–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang IY, Bai Y, Sanderson MJ, Sneyd J (2010) A mathematical analysis of agonist- and KCl-induced Ca(2+) oscillations in mouse airway smooth muscle cells. Biophys J 98(7):1170–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wray S, Burdyga T (2010) Sarcoplasmic reticulum function in smooth muscle. Physiol Rev 90(1):113–178

    Article  CAS  PubMed  Google Scholar 

  • Tassoni JP Jr, Fawaz KA, Johnston DE (1991) Cirrhosis and portal hypertension in a patient with adult Niemann-Pick disease. Gastroenterology 100(2):567–569

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicola Fameli or Cornelis van Breemen .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

In this animation, we start from an extracellular view of one PM-SR nanospace. The PM is depicted in red. The light blue/green object is part of the SR. The dark blue hemispheres on it represent SERCA pumps and the yellow objects on the PM represent NCX. The white sphere within the nanospace is one Ca2+ undergoing three-dimensional random-walk motion. As the animation progresses, we are flying under the PM and inside the space between the PM and SR membrane and eventually out again. All the elements in this model are to scale, except for Ca2+, whose radius is ten times its Bohr radius for visibility (MPG 8720 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fameli, N., Evans, A.M., van Breemen, C. (2017). Tissue Specificity: The Role of Organellar Membrane Nanojunctions in Smooth Muscle Ca2+ Signaling. In: Groschner, K., Graier, W., Romanin, C. (eds) Store-Operated Ca²⁺ Entry (SOCE) Pathways. Advances in Experimental Medicine and Biology, vol 993. Springer, Cham. https://doi.org/10.1007/978-3-319-57732-6_17

Download citation

Publish with us

Policies and ethics