Skip to main content

Endovascular Treatment of Infrapopliteal Arteries

  • Chapter
  • First Online:
Textbook of Catheter-Based Cardiovascular Interventions

Abstract

Patients with critical limb ischemia typically have multilevel peripheral artery disease including infrapopliteal atherosclerotic occlusions. Endovascular interventions to the infrapopliteal arteries are increasingly performed to maximize limb salvage and prevent major amputation. Recent advances in technical approaches to infrapopliteal artery lesion crossing and balloon angioplasty have improved limb salvage rates, while the addition of adjunctive and emerging therapies promises to improve long-term outcomes in this challenging patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shishehbor MH, White CJ, Gray BH, et al. Critical limb ischemia: an expert statement. J Am Coll Cardiol. 2016;68:2002–15.

    Article  PubMed  Google Scholar 

  2. Rueda CA, Nehler MR, Perry DJ, et al. Patterns of artery disease in 450 patients undergoing revascularization for critical limb ischemia: implications for clinical trial design. J Vasc Surg. 2008;47:995–9.

    Article  PubMed  Google Scholar 

  3. Rundbach JH, Armstrong EJ, Contos B, et al. Key concepts in critical limb ischemia: selected proceedings from the 2015 vascular interventional advances meeting. Ann Vasc Surg. 2017;38:191–205.

    Article  Google Scholar 

  4. Gray B, Diaz-Sandoval L, Dieter R, Jaff M, White C. Peripheral vascular disease Committee for the society for cardiovascular angiography and interventions. SCAI expert consensus statement for infrapopliteal arterial intervention appropriate use. Catheter Cardiovasc Interv. 2014;84:539–45.

    Article  PubMed  Google Scholar 

  5. Conte MS, Geraghty PJ, Bradbury AW, et al. Suggested objective performance goals and clinical trial design for evaluating catheter-based treatment of critical limb ischemia. J Vasc Surg. 2009;50:1462–73.

    Article  PubMed  Google Scholar 

  6. Iida O, Nakamura M, Yamauchi Y, et al. Endovascular treatment for infrainfuinal vessels in patients with critical limb ischemia: the OLIVE registry, a prospective, multicenter study in Japan with 12-month follow-up. Circ Cardiovasc Interv. 2013;6:68–76.

    Article  PubMed  Google Scholar 

  7. Iida O, Nakamura M, Yamauchi Y, et al. Three-year outcomes of the OLIVE registry, a prospective multicenter study of patients with critical limb ischemia. J Am Coll Cardiol Intv. 2015;8:1493–502.

    Article  Google Scholar 

  8. Patel MR, Conte MS, Cutlip DE, et al. Evaluation and treatment of patients with lower extremity peripheral artery disease: consensus definitions from the Peripheral Academic Research Consortium (PARC). J Am Coll Cardiol. 2015;65:931–41.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Adam DJ, Beard JD, Cleveland T, Bell J, Bradbury AW, Forbes JF, et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet. 2005;366:1925–34.

    Article  CAS  Google Scholar 

  10. BASIL-2: Bypass vs. Angioplasty in Severe Ischaemia of the Leg – 2. http://www.isrctn.com/. ISRCTN27728689.

  11. Mendard MT, Farber A, Assmann SF, et al. Design and rationale of the best endovascular versus best surgical therapy for patients with critical limb ischemia (BEST-CLI) trial. J Am Heart Assn. 2016;5:e003219.

    Article  Google Scholar 

  12. Abu Dabrh AM, Steffen MW, Undavalli C, et al. Bypass surgery versus endovascular interventions in severe or critical limb ischemia. J Vasc Surg. 2016;63:244–53.

    Article  PubMed  Google Scholar 

  13. Siracuse JJ, Menard MT, Eslami MH, et al. Comparison of open and endovascular treatment of patients with critical limb ischemia in the vascular quality initiative. J Vasc Surg. 2016;63:958–65.

    Article  PubMed  Google Scholar 

  14. Hicks CW, Najafian A, Farber A, et al. Below-knee endovascular interventions have better outcomes compared to open bypass for patients with critical limb ischemia. Vasc Med. 2016;22:28–34. epub ahead of print

    Article  PubMed  Google Scholar 

  15. Bisdas T, Borowski M, Stavroulakis K, et al. Endovascular therapy versus bypass surgery as first-line treatment strategies for critical limb ischemia: results of the interim analysis of the CRITISCH registry. J Am Coll Cardiol Intv. 2016;9:2557–65.

    Article  Google Scholar 

  16. TASC Steering Committee, Jaff MR, White CJ, et al. An update on methods for revascularization and expansion of the TASC lesion classification to include below-the-knee arteries: a supplement to the inter-society consensus for the management of peripheral arterial disease (TASC II). J Endovasc Ther. 2015;22:663–77.

    Article  Google Scholar 

  17. Singh GD, Armstrong EJ, Yeo KK, et al. Endovascular recanalization of infrapopliteal occlusions in patients with critical limb ischemia. J Vasc Surg. 2014;59:1300–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kawarada O, Sakamoto S, Harada K, Ishihara M, Yasuda S, Ogawa H. Contemporary crossing techniques for infrapopliteal chronic total occlusions. J Endovasc Ther. 2014;21:266–80.

    Article  PubMed  Google Scholar 

  19. Rogers RK, Datillo PB, Garcia JA, Tsai T, Casserly IP. Retrograde approach to recanalization of complex tibial disease. Catheter Cardiovasc Interv. 2011;77:915–25.

    Article  PubMed  Google Scholar 

  20. Botti CF, Ansel GM, Silver MJ, Barker BJ, South S. Percutaneous retrograde tibial access in limb salvage. J Endovasc Ther. 2003;10:614–8.

    PubMed  Google Scholar 

  21. Kang WY, Campia U, Ota H, et al. Vascular access in critical limb ischemia. Cardiovasc Revasc Med. 2016;17:190–8.

    Article  PubMed  Google Scholar 

  22. Mustapha JA, Saab F, Diaz-Sandoval L, et al. Tibio-pedal arterial minimally invasive retrograde revascularization in patients with advanced peripheral vascular disease: the TAMI technique, original case series. Catheter Cardiovasc Interv. 2014;83:987–4.

    Article  CAS  PubMed  Google Scholar 

  23. Montero-Baker M, Schmidt A, Braunlich S, et al. Retrograde approach for complex popliteal and tibioperoneal occlusions. J Endovasc Ther. 2008;15:594–604.

    Article  PubMed  Google Scholar 

  24. Bazan HA, Le L, Donovan M, et al. Retrograde pedal access for patients with critical limb ischemia. J Vasc Surg. 2014;60:375–81.

    Article  PubMed  Google Scholar 

  25. Walker CM, Mustapha J, Zeller T, et al. Tibiopedal access for crossing of infrainguinal artery occlusions: a prospective multicenter observational study. J Endovasc Ther. 2016;23:839–46.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Manzi M, Fusaro M, Ceccacci T, Erente G, Dalla Paola L, Brocco E. Clinical results of below-the knee intervention using pedal-plantar loop technique for the revascularization of foot arteries. J Cardiovasc Surg. 2009;50:331–7.

    CAS  Google Scholar 

  27. Kawarada O, Yokoi Y, Higashimori A, Waratani N, Waseda K, Honda Y, Fitzgerald PJ. Stent-assisted below-the-ankle angioplasty for limb salvage. J Endovasc Ther. 2011;18:32–42.

    Article  PubMed  Google Scholar 

  28. Katsanos K, Diamantopoulos A, Spiliopoulos S, Karnabatidis D, Siablis D. Below-the-ankle angioplasty and stenting for limb salvage: anatomical considerations and long-term outcomes. Cardiovasc Intv Radiol. 2013;36:926–35.

    Article  Google Scholar 

  29. Iida O, Soga Y, Hirano K, et al. Long-term results of direct and indirect endovascular revascularization based on the angiosome concept patients with critical limb ischemia presenting with isolated below-the-knee lesions. J Vasc Surg. 2012;55:363–70.

    Article  PubMed  Google Scholar 

  30. Bosanquet DC, Glasbey JC, Williams IM, et al. Systematic review and meta-analysis or direct versus indirect angiosomal revascularization of infrapopliteal arteries. Eur J Vasc Endovasc Surg. 2014;48:88–97.

    Article  CAS  PubMed  Google Scholar 

  31. Baumann F, Fust J, Engelberger RP, et al. Early recoil after balloon angioplasty of tibial artery obstructions in patients with critical limb ischemia. J Endovasc Ther. 2014;21:44–51.

    Article  PubMed  Google Scholar 

  32. Schmidt A, Ulrich M, Winkler B, et al. Angiographic patency and clinical outcome after balloon angioplasty for extensive infrapopliteal arterial disease. Catheter Cardiovasc Interv. 2010;76:1047–54.

    Article  PubMed  Google Scholar 

  33. Baumann F, Bloesch S, Engelberger RP, et al. Clinically-driven need for secondary interventions after endovascular revascularization of tibial arteries in patients with critical limb ischemia. J Endovasc Ther. 2013;20:707–13.

    Article  PubMed  Google Scholar 

  34. Iida O, Soga Y, Kawasaki D, et al. Angiographic restenosis and its clinical impact after infrapopliteal angioplasty. Eur J Vasc Endovasc Surg. 2012;44:425–31.

    Article  CAS  PubMed  Google Scholar 

  35. Scheinert D, Katsanos K, Zeller T, et al. A prospective randomized multicenter comparison of balloon angioplasty and infrapopliteal stenting with the sirolimus-eluting stent in ischemic peripheral arterial disease. J Am Coll Cardiol. 2012;60:2290–5.

    Article  PubMed  Google Scholar 

  36. Bosiers M, Scheinert D, Peeters P, et al. Randomized comparison of everolimus-eluting versus bare-metal stents in patients with critical limb ischemia and infrapopliteal arterial occlusive disease. J Vasc Surg. 2012;55:390–9.

    Article  PubMed  Google Scholar 

  37. Katsanos K, Kitrou P, Spiliopoulous S, et al. Comparative effectiveness of plain balloon angioplasty, bare metal stents, drug-coated balloons, and drug-eluting stents for the treatment of infrapopliteal peripheral artery disease: systematic review and Bayesian network meta-analysis of randomized controlled trials. J Endovasc Ther. 2016;23:851–63.

    Article  PubMed  Google Scholar 

  38. Karnabatidis D, Katsanos K, Spiliopoulos S, et al. Incidence, anatomical location, and clinical significance of compressions and fractures in infrapopliteal balloon-expandable metal stents. J Endovasc Ther. 2009;16:15–22.

    Article  PubMed  Google Scholar 

  39. Laird JR, Schneider PA, Tepe G, et al. Durability of treatment effect using a drug-coated balloon for femoropopliteal lesions: 24-month results of IN.PACT SFA. J Am Coll Cardiol. 2015;66:2329–38.

    Article  PubMed  Google Scholar 

  40. Schmidt A, Piorkowski M, Werner M, et al. First experience with drug-eluting balloons in infrapopliteal arteries. J Am Coll Cardiol. 2011;58:1105–9.

    Article  CAS  PubMed  Google Scholar 

  41. Liistro F, Porto I, Angioli P, et al. Drug-eluting balloon in peripheral intervention for below the knee angioplasty evalaution (DEBATE-BTK): a randomized trial in diabetic pateints with critical limb ischemia. Circulation. 2013;128:615–21.

    Article  CAS  PubMed  Google Scholar 

  42. Zeller T, Baumgartner I, Scheinert D, et al. IN.PACT DEEP trial investigators. Drug-eluting balloon versus standard balloon angioplasty for infrapopliteal revascularization in critical limb ischemia: 12-month results from the IN.PACT DEEP randomized trial. J Am Coll Cardiol. 2014;64:1568–76.

    Article  PubMed  Google Scholar 

  43. Zeller T, Beschorner U, Pilger E, et al. Paclitaxel coated balloons in infrapopliteal arteries: 12-month results from the Biolux P-II randomized trial. J Am Coll Cardiol Intv. 2015;8:1614–22.

    Article  Google Scholar 

  44. Cassese N, Ndrepepa G, Liistro F, et al. Drug-coated balloons for revascularization of infrapopliteal arteries: a meta-analysis of randomized trials. J Am Coll Cardiol Intv. 2016;9:1072–80.

    Article  Google Scholar 

  45. Laird JR, Zeller T, Gray BH, et al. Limb salvage following laser-assisted angioplasty for critical limb ischemia: results of the LACI multicenter trial. J Endovasc Ther. 2006;12:1–11.

    Article  Google Scholar 

  46. Bosiers M, Peeters P, Elst FV, et al. Excimer laser assisted angioplasty for critical limb ischemia: results of the LACI Belgium study. Eur J Vasc Endovasc Surg. 2005;29:613–9.

    Article  CAS  PubMed  Google Scholar 

  47. Singh T, Kodenchery M, Artham S, et al. Laser in infrapopliteal and popliteal stenosis (LIPS): retrospective review of laser-assisted balloon angioplasty versus balloon angioplasty alone for below knee arterial disease. Cardiovasc Interv Ther. 2014;29:109–16.

    Article  PubMed  Google Scholar 

  48. Piyaskulkaew C, Parvataneni K, Ballout H, et al. Laser in infrapopliteal and popliteal stenosis 2 study (LIPS2): long-term outcomes of laser-assisted balloon angioplasty versus balloon angioplasty for below knee peripheral arterial disease. Catheter Cardiovasc Interv. 2015;86:1211–8.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Das T, Mutapha J, Indes J, et al. Technique optimization of orbital atherectomy in calcified peripheral lesions of the lower extremities: the CONFIRM series, a prospective multicentre registry. Catheter Cardiovasc Interv. 2014;83:115–22.

    Article  PubMed  Google Scholar 

  50. Safian RD, Niazi K, Runyon JP, et al. Orbital atherectomy for infrapopliteal disease: device concept and outcome data for the OASIS trial. Catheter Cardiovasc Interv. 2009;73:406–12.

    PubMed  Google Scholar 

  51. Shammas NW, Lam R, Mustapha J, et al. Comparison of orbital atherectomy plus balloon angioplasty versus balloon angioplasty alone in patients with critical limb ischemia: results of the CALCIUM 360 randomized pilot trial. J Endovasc Ther. 2012;19:480–8.

    Article  PubMed  Google Scholar 

  52. Rastan A, McKinsey JF, Garcia LA, et al. One-year outcomes following directional atherectomy of infrapopliteal artery lesions: subgroup results of the prospective, multicentre DEFINITIVE LE trial. J Endovasc Ther. 2015;22:839–46.

    Article  PubMed  Google Scholar 

  53. Owens CD, Gasper WJ, Walker JP, et al. Safety and feasibility of adjunctive dexamethasone infusion into the adventitia of the femoropopliteal artery following endovascular intervention. J Vasc Surg. 2014;59:1016–24.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Varcoe RL, Schouten O, Thomas SD, Lennox AF. Experience with the absorb everolimus-eluting bioresorbable vascular scaffold below the knee: six-month clinical and imaging outcomes. J Endovasc Ther. 2015;22:226–32.

    Article  PubMed  Google Scholar 

  55. Damianou C, Couppis A. Feasibility study for removing calcified material using a planar rectangular ultrasound transducer. J Ultrasound. 2016;19:115–23.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Waldo MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waldo, S.W., Armstrong, E.J. (2018). Endovascular Treatment of Infrapopliteal Arteries. In: Lanzer, P. (eds) Textbook of Catheter-Based Cardiovascular Interventions. Springer, Cham. https://doi.org/10.1007/978-3-319-55994-0_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55994-0_84

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55993-3

  • Online ISBN: 978-3-319-55994-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics