Skip to main content

Angiosome System and Principle

  • Chapter
  • First Online:
Book cover Textbook of Catheter-Based Cardiovascular Interventions

Abstract

Despite high-performance modern interventional techniques and undeniable clinical medical progress, critical limb ischemia (CLI) persists to threaten large groups of patients afflicted by peripheral arterial occlusive disease. Among new contemporary strategies for revascularization, the angiosome concept was designed to enhance ischemic tissue regeneration in below-the-knee wound-targeted revascularizations. At present, 30 years after its first description in plastic surgery and following a decade of vascular applications for limb salvage, new questions arise in with regard to use in current clinical practice. What exactly does angiosome-directed revascularization mean, what diagnostic method best matches the ischemic foot angiosomal distribution, what specific changes warrant tibial angioplasty versus bypass in topographic foot revascularization, and how do we assess clinical success among distinct phases of tissue reperfusion and cicatrization, are some of the questions challenging interventionists. Other open issues concern the technical feasibility of an angiosome-guided strategy in daily practice and indications for this approach in specific «collateral-deprived» groups of CLI patients.

Despite a lack of consistency in available clinical studies, several contemporary meta-analyses suggest that angiosome-oriented revascularization, whenever technically feasible, by using main tibial trunks, accessible foot arches and collateral channels, may enhance and stabilize post-ischemic tissue regeneration. However, modest differences in limb salvage and survival rates are reported by some authors when comparing direct versus indirect revascularization strategies. This chapter presents the main characteristics of this continuously evolving approach and highlights observations and challenges of this appealing concept in lower limb revascularization interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor GI, Palmer JH. The vascular territories (angiosomes) of the body: experimental studies and clinical applications. Br J Plast Surg. 1987;40:113–41.

    Article  PubMed  CAS  Google Scholar 

  2. Taylor GI, Pan WR. Angiosomes of the leg: anatomic study and clinical implications. Plast Reconstr Surg. 1998;102(3):599–616.

    Article  PubMed  CAS  Google Scholar 

  3. Taylor GI, Caddy CM, Watterson PA, Crock JG. The venous territories (venosomes) of the human body: experimental study and clinical implications. Plast Reconstr Surg. 1990;86(2):185–213.

    Article  PubMed  CAS  Google Scholar 

  4. Crawford ME. Flap classification and survival factors. In: Dockery GL, Crawford ME, editors. Lower extremity soft tissue and cutaneous plastic surgery. London/New York/Oxford/Sidney: Saunders Elsevier; 2006. p. 97–104.

    Google Scholar 

  5. Alexandrescu V, Vincent G, Azdad K, et al. A reliable approach to diabetic neuroischemic foot wounds: below-the-knee angiosome-oriented angioplasty. J Endovasc Ther. 2011;18:376–87.

    Article  PubMed  Google Scholar 

  6. Iida O, Takahara M, Soga Y, et al. Impact of angiosome-oriented revascularization on clinical outcomes in critical limb ischemia patients without concurrent wound infection and diabetes. J Endovasc Ther. 2014;21(5):607–15.

    Article  PubMed  Google Scholar 

  7. Alexandrescu VA. Angiosomes applications in critical limb ischemia: in search for relevance. Torino: Minerva Medica; 2012. p. 1–30, p 71–88.

    Google Scholar 

  8. Attinger CE, Evans KK, Bulan E, et al. Angiosomes of the foot and ankle and clinical implications for limb salvage: reconstruction, incisions and revascularization. Plast Reconstr Surg. 2006;117(7 Suppl):261S–93S.

    Article  PubMed  CAS  Google Scholar 

  9. Bouchet A, Cuilleret J. Topographic anatomy of the inferior limb. In: Topographic anatomy of the human body. 3rd ed. Paris: Simep Publ. Masson; 1995. p. 26–97.

    Google Scholar 

  10. Schaper W. Collateral circulation, past and present. Basic Res Cardiol. 2009;104(1):5–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ziegler MA, Distasi MR, Bills RG, et al. Marvels, mysteries and misconceptions of vascular compensation to peripheral artery occlusion. Microcirculation. 2010;17(1):3–20.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Williams PL, Warwick R, Dyson M, et al. Angiology, blood vessels. In: Williams PL, Warwick R, Dyson M, Bannister LH, editors. Gray’s anatomy. 37th ed. New York: Churchill Livingstone; 1989. p. 682–94.

    Google Scholar 

  13. Gulati A, Botnaru I, Garcia LA. Critical limb ischemia and its treatments: a review. J Cardiovasc Surg. 2015;56(5):775–85.

    CAS  Google Scholar 

  14. Lehoux S, Lévi BI. Collateral artery growth: making the most of what you have. Circ Res. 2006;99:567–9.

    Article  PubMed  CAS  Google Scholar 

  15. Rashid H, Slim H, Zayed H, et al. The impact of arterial pedal arch quality and angiosome revascularization on foot tissue loss healing and infrapopliteal bypass outcome. J Vasc Surg. 2013;57:1219–26.

    Article  PubMed  Google Scholar 

  16. Spillerova K, Biancari F, Leppäniemi A, et al. Differential impact of bypass surgery and angioplasty on angiosome-targeted infrapopliteal revascularization. Eur J Vasc Endovasc Surg. 2014;49(4):412–9.

    Article  Google Scholar 

  17. Marso SP, Hiatt WR. Peripheral arterial disease in patients with diabetes. J Am Coll Cardiol. 2006;47(5):921–9.

    Article  PubMed  Google Scholar 

  18. Jörneskog G. Why critical limb ischemia criteria are not applicable to diabetic foot and what the consequences are. Scand J Surg. 2012;101(2):114–8.

    Article  PubMed  Google Scholar 

  19. Alexandrescu VA. Myths and proofs of angiosome applications in CLI: where do we stand? J Endovasc Ther. 2014;21:616–24.

    Article  PubMed  Google Scholar 

  20. Kropman RH, Kiela G, Moll FL, et al. Variations in the anatomy of the popliteal artery and its side branches. Vasc Endovasc Surg. 2011;45(6):536–40.

    Article  Google Scholar 

  21. Abou-Foul AK, Borumandi F. Anatomical variations of lower limb vasculature and implications for free fibula flap : systematic review and critical analysis. Microsurgery. 2016;36(2):165–72.

    Article  PubMed  Google Scholar 

  22. Nichols WW, O’Rurke MF, Vlachopoulos C. Generalized and metabolic arterial disease. In: Nichols WW, O’Rurke MF, Vlachopoulos C, 6th, editors. McDonald’s blood flow in arteries. Theoretical, experimental and clinical principles. London: Hodder Arnold; 2011. p. 523–34.

    Google Scholar 

  23. Ovcharenko DV, Kaputin MI, Voronkov AA, et al. Angiographic assessment of the incidence rate of atypical variants of the development of crural and plantar arteries. Angiol Sosud Khir. 2012;18(1):57–60.

    PubMed  CAS  Google Scholar 

  24. Yamada T, Gloviczki P, Bower TC, et al. Variations of the arterial anatomy of the foot. Am J Surg. 1993;166(2):130–5.

    Article  CAS  PubMed  Google Scholar 

  25. Lee JH, Dauber W. Anatomic study of the dorsalis pedis-first dorsal metatarsal artery. Ann Plast Surg. 1997;38(1):50–5.

    Article  PubMed  CAS  Google Scholar 

  26. Singh BN, Burmeister W, Machado K, et al. Variations of the origin of the arcuate artery. J Am Podiatr Med Assoc. 2013;103(3):181–4.

    Article  PubMed  Google Scholar 

  27. Gabrielli C, Olave E, Mandiola E, et al. The deep plantar arch in humans: constitution and topography. Surg Radiol Anat. 2001;23(4):253–8.

    Article  PubMed  CAS  Google Scholar 

  28. Alexandrescu VA, London V. Angiosomes : the cutaneous and arterial evaluation in CLI patients. In: Mustapha JM, editor. Critical limb ischemia: diagnosis and interventions. Chicago: HMP; 2015. p. 71–88.

    Google Scholar 

  29. Spillerova K, Sörderström M, Albäck A, et al. The feasibility of angiosome-targeted endovascular treatment in patients with critical limb ischaemia and foot ulcer. Ann Vasc Surg. 2015;30:270–6.

    Article  PubMed  Google Scholar 

  30. Apelqvist J, Bakker K, van Houtum WH, et al. Practical guidelines on the management and prevention of the diabetic foot: based upon the InternationalConsensus on the Diabetic Foot (2007) Prepared by the International Working Group on the Diabetic Foot. Diabetes Metab Res Rev. 2008;24(Suppl 1):S181–7.

    Article  PubMed  Google Scholar 

  31. Toursarkissian B, D’Ayala M, Stefanidis D, et al. Angiographic scoring of vascular occlusive disease in the diabetic foot: relevance to bypass graft patency and limb salvage. J Vasc Surg. 2002;35(3):494–500.

    Article  PubMed  Google Scholar 

  32. Karacagil S, Almgren B, Lorelius LE, et al. Angiographic runoff patterns in patients undergoing lower limb revascularization. Acta Chir Scand. 1989;155(1):19–24.

    PubMed  CAS  Google Scholar 

  33. Ciavarella A, Silletti A, Mustacchio A, et al. Angiographic evaluation of the anatomic pattern of arterial obstructions in diabetic patients with critical limb ischemia. Diabetes Metab. 1993;19(6):586–9.

    CAS  Google Scholar 

  34. Santos VP, Alves CA, Fidelis C, et al. Arteriographic findings in diabetic and non- diabetic with critical limb ischemia. Rev Assoc Med Bras. 2013;59(6):557–62.

    Article  PubMed  Google Scholar 

  35. Aerden D, Denecker N, Gallala S, et al. Wound morphology and topography in the diabetic foot: hurdles in implementing angiosome-guided revascularization. Int J Vasc Med. 2014;2:1–5.

    Google Scholar 

  36. Waltenberg J. Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc Res. 2001;49:554–60.

    Article  Google Scholar 

  37. Guarini G, Capozza PG, Huqi A, et al. Microvascular function/dysfunction downstream a coronary stenosis. Curr Pharm Des. 2013;19(13):2366–74.

    Article  PubMed  CAS  Google Scholar 

  38. Berguer R, Kieffer E. Mechanisms of cerebral ischemia. In: Berguer R, Kieffer E, editors. Surgery of the arteries to the head. New York/Berlin/Heidelberg/London: Springer; 1992. p. 59–66.

    Chapter  Google Scholar 

  39. Kamenskaia OV, Klinkova AS, Karpenko AA, et al. Peripheral microcirculation in patients with lower-limb atherosclerosis on the background of metabolic syndrome. Angiol Sosud Surg. 2014;20(4):22–6.

    CAS  Google Scholar 

  40. Scholz D, Ziegelhoeffer T, Helisch A, et al. Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion. J Mol Cell Cardiol. 2002;34(7):775–87.

    Article  PubMed  CAS  Google Scholar 

  41. Summer DS. Hemodynamics and rheology of vascular disease : applications to diagnosis and treatment. In: Ascer E, Hollier LH, Strandness Jr D, Towne JB, editors. Haimovici’s vascular surgery principles and techniques. 4th ed. Cambridge/London/Berlin: Blackwell Science; 1996. p. 104–24.

    Google Scholar 

  42. Kagaya Y, Ohura H, Suga H, et al. Real angiosome assessment from peripheral tissue perfusion using tissue oxygen saturation foot mapping in patients with critical limb ischemia. Eur J Vasc Endovasc Surg. 2014;47:433–41.

    Article  PubMed  CAS  Google Scholar 

  43. Azuma N, Uchida H, Kokubo T, et al. Factors influencing wound healing of critical ischemic foot after bypass surgery : is the angiosome important in selecting bypass target artery? Eur J Vasc Endovasc Surg. 2012;43(3):322–8.

    Article  PubMed  CAS  Google Scholar 

  44. Neville RF, Attinger CE, Bulan EJ, et al. Revascularization of a specific angiosome for limb salvage: does the target artery matter? Ann Vasc Surg. 2009;23:367–73.

    Article  PubMed  Google Scholar 

  45. Varela C, Acin NF, Haro JD, et al. The role of foot collateral vessels on ulcer healing and limb salvage after successful endovascular and surgical distal procedures according to an angiosome model. Vasc Endovasc Surg. 2010;44:654–60.

    Article  Google Scholar 

  46. Biancari F, Juvonen T. Angiosome-targeted lower limb revascularization for ischemic foot wounds: systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2014;47(5):517–22.

    Article  PubMed  CAS  Google Scholar 

  47. Bosanquet DC, Glasbey JC, Williams IM, et al. Systematic review and meta-analysis of direct versus indirect angiosomal revascularization of infrapopliteal arteries. Eur J Vasc Endovasc Surg. 2014;48(1):88–97.

    Article  PubMed  CAS  Google Scholar 

  48. Norgreen L, Hiatt WR, Dormandy JA, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). Eur J Vasc Endovasc Surg. 2007;33(Suppl 1):S1–S75.

    Article  Google Scholar 

  49. Guzman RJ, Brinkley M, Schumacher PM, et al. Tibial artery calcification score as a marker of amputation risk in patients with peripheral arterial disease. J Am Coll Cardiol. 2008;51(2):1967–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Alexandrescu VA, Hubermont G, Philips Y, et al. Selective primary angioplasty following an angiosome model of reperfusion in the treatment of Wagner 1–4 diabetic foot lesions: practice in a multidisciplinary diabetic limb service. J Endovasc Ther. 2008;15:580–93.

    Article  PubMed  Google Scholar 

  51. Ohtake T, Oka M, Ikee R, et al. Impact of lower limbs’ arterial calcification on the prevalence and severity of PAD in patients on hemodialysis. J Vasc Surg. 2011;53(3):676–83.

    Article  PubMed  Google Scholar 

  52. Bell PRF, Charlesworth D, DePalma RG, et al. The definition of critical ischemia of a limb. Br J Surg. 1982;69(Suppl):S2–3.

    Google Scholar 

  53. Alexandrescu V, Letawe A. Critical limb ischemia strategies in diabetics: present deeds and future challenges. Curr Res Diabetes Obes J. 2015;1(1):553–5.

    Google Scholar 

  54. Chin JA, Sumpio BE. New advances in limb salvage. Surg Technol Int. 2014;25:212–6.

    PubMed  Google Scholar 

  55. O’Neal LW. Surgical pathology of the foot and clinicopathologic correlations. In: Bowker JH, Pfeifer MA, editors. Levin and O’Neal’s the diabetic foot. 7th ed. Philadelphia: Mosby Elsevier; 2007. p. 367–401.

    Google Scholar 

  56. Dangwal S, Stratmann B, Bang C, et al. Impairment of wound healing in patients with type 2 diabetes mellitus influences circulating micro RNA patterns via inflammatory cytokines. Arterioscler Thromb Vasc Biol. 2015;35(6):1480–8.

    Article  PubMed  CAS  Google Scholar 

  57. Conway KP, Harding KG. Wound healing in the diabetic foot. In: Bowker JH, Pfeifer MA, 7th, editors. Levin and O’Neal’s the diabetic foot. Philadelphia: Mosby Elsevier; 2007. p. 319–29.

    Google Scholar 

  58. Defraigne JO. A central pathophysiological mechanism explaining diabetic complications? Rev Med Liege. 2005;60(5–6):472–8.

    PubMed  CAS  Google Scholar 

  59. Iida O, Nanto S, Uematsu M, et al. Importance of the angiosome concept for endovascular therapy in patients with critical limb ischemia. Catheter Cardiovasc Interv. 2010;75:830–6.

    PubMed  Google Scholar 

  60. Deguchi J, Kitaoka T, Yamamoto K, et al. Impact of angiosome on treatment of diabetic foot with paramalleolar bypass. J Jpn Coll Angiol. 2010;50:687–91.

    Google Scholar 

  61. Blanes O, Riera V, Puigmacia L, et al. Percutaneous revascularization of specific angiosome in critical limb ischemia. Angeologia. 2011;63:11–7.

    Article  Google Scholar 

  62. Lejay A, Georg Y, Tartaglia E, et al. Long-term outcomes of direct and indirect below-the-knee open revascularization based on the angiosome concept in diabetic patients with critical limb ischemia. Ann Vasc Surg. 2014;28(4):983–9.

    Article  PubMed  Google Scholar 

  63. Zheng XT, Zeng RC, Huang JY, et al. The use of the angiosome concept for treating infrapopliteal critical limb ischemia through interventional therapy and determining the clinical significance of collateral vessels. Ann Vasc Surg. 2016;32:41–9.

    Article  PubMed  Google Scholar 

  64. Osawa S, Terashi H, Tsuji Y, et al. Importance of the six angiosomes concept through arterial-arterial connections in CLI. Int Angiol. 2013;32(4):375–85.

    PubMed  CAS  Google Scholar 

  65. Pavé M, Benadiba L, Berger L, et al. Below-the-knee angioplasty for critical limb ischemia: results of a series of 157 procedures and impact of the angiosome concept. Ann Vasc Surg. 2016;36:199–207.

    Article  PubMed  Google Scholar 

  66. Soares Rde A, Brochado Neto FC, Matielo MF, et al. Concept of angiosome does not affect limb salvage in infrapopliteal angioplasty. Ann Vasc Surg. 2016;32:34–40.

    Article  PubMed  Google Scholar 

  67. Palena LM, Garcia LF, Brigato C, et al. Angiosomes : how do they affect my treatment? Tech Vasc Interv Radiol. 2014;17(3):155–69.

    Article  PubMed  Google Scholar 

  68. Jens S, Conijn AP, Koelemay MJ, et al. Randomized trials for endovascular treatment of infrainguinal arterial disease: systematic review and meta-analysis (part 2: below the knee). Eur J Vasc Endovasc Surg. 2014;47(5):536–44.

    Article  PubMed  CAS  Google Scholar 

  69. Hughes K, Domenig CM, Hamdan AD, et al. Bypass to plantar and tarsal arteries: an acceptable approach to limb salvage. J Vasc Surg. 2004;40(6):1149–57.

    Article  PubMed  Google Scholar 

  70. Brochado-Neto FC, Cury MV, Bonadiman SS, et al. Vein bypass to branches of pedal arteries. J Vasc Surg. 2012;55(3):746–52.

    Article  PubMed  Google Scholar 

  71. Park SW, Kim JS, Yun IJ, et al. Clinical outcomes of endovascular treatments for critical limb ischemia with chronic total occlusive lesions limited to below-the-knee arteries. Acta Radiol. 2013;54(7):785–9.

    Article  PubMed  Google Scholar 

  72. Jaff MR, White CJ, Hiatt WR, et al. An update on methods for revascularization and expansion of the TASC lesion classification to include below-the-knee arteries: a supplement to the inter-society consensus for the management of peripheral arterial disease (TASC II). J Endovasc Surg. 2015;20(5):465–78.

    Google Scholar 

  73. McCallum JC, Lane JS 3rd. Angiosome-directed revascularization for critical limb ischemia. Semin Vasc Surg. 2014;27(1):32–7.

    Article  PubMed  Google Scholar 

  74. Benitez E, Sumpio BJ, Chin J, et al. Contemporary assessment of foot perfusion in patients with critical limb ischemia. Semin Vasc Surg. 2014;27(1):3–15.

    Article  PubMed  Google Scholar 

  75. Kinlay S. Management of critical limb ischemia. Circ Cardiovasc Interv. 2016;9(2):46–52.

    Article  CAS  Google Scholar 

  76. Huang TY, Huang TS, Wang YC, et al. Direct revascularization with the angiosome concept for lower limb ischemia : a systematic review and meta- analysis. Medicine (Baltimore). 2015;94(34):1427.

    Article  Google Scholar 

  77. Azuma N, Koya A, Uchida D, et al. Ulcer healing after peripheral intervention, can we predict it before revascularization? Circ J. 2014;78(8):1791–800.

    Article  PubMed  Google Scholar 

  78. Shiraki T, Iida O, Takahara M, et al. Predictors of delayed wound healing after endovascular therapy of isolated infrapopliteal lesions underlying critical limb ischemia in patients with high prevalence of diabetes mellitus and hemodialysis. Eur J Vasc Endovasc Surg. 2015;49(5):565–73.

    Article  PubMed  CAS  Google Scholar 

  79. Faglia E, Clerici G, Caminiti M, et al. Heel ulcer and blood flow: the importance of the angiosome concept. Int J Low Extrem Wounds. 2013;12(3):226–30.

    Article  PubMed  Google Scholar 

  80. Brodmann M. The angiosome concept in clinical practice : implications for patient-specific recanalization procedures. J Cardiovasc Surg. 2013;54(5):567–71.

    CAS  Google Scholar 

  81. Diehm N. Intra-arterial digital subtraction angiography : what you see is not always what you get. J Endovasc Ther. 2015;22(2):252–3.

    Article  PubMed  Google Scholar 

  82. Cooper KJ, Pena C, Benenati J. Determining end-points for critical limb ischemia interventions. Tech Vasc Interv Radiol. 2016;19(2):104–12.

    Article  PubMed  Google Scholar 

  83. Jeon EY, Cho YK, Yoon DY, et al. Clinical outcome of angiosome infrapopliteal percutaneous transluminal angioplasty for isolated infrapopliteal lesions in patients with critical limb ischemia. Diagn Interv Radiol. 2016;22(1):52–8.

    Article  PubMed  Google Scholar 

  84. Bunte MC, Shishehbor MH. Treatment of infrapopliteal critical limb ischemia in 2013 : the wound perfusion approach. Curr Cardiol Rep. 2013;15(6):363–7.

    Article  PubMed  Google Scholar 

  85. Suh HS, Oh TS, Lee HS, et al. A new approach for reconstruction of diabetic foot wounds using the angiosome ans supermicrosurgery concept. Plast Reconstr Surg. 2016;38(4):702–9.

    Article  CAS  Google Scholar 

  86. Gvazava T, Smirnov G, Petrova V, et al. Improving the performance of small amputations in complicated forms of diabetic foot. Georgian Med News. 2015;240:7–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlad-Adrian Alexandrescu MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alexandrescu, VA., Defraigne, JO. (2018). Angiosome System and Principle. In: Lanzer, P. (eds) Textbook of Catheter-Based Cardiovascular Interventions. Springer, Cham. https://doi.org/10.1007/978-3-319-55994-0_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55994-0_77

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55993-3

  • Online ISBN: 978-3-319-55994-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics