Skip to main content

Tumor Treatment

  • Chapter
  • First Online:
  • 448 Accesses

Abstract

The role of endovascular therapy in tumor management has significantly increased over the past decade as a result of improved technology, better understanding of tumor pathology, and evolution of chemotherapy regimens. The role of endovascular therapy has a broad spectrum in tumor management, from emergency treatment of a life-threatening carotid blowout to elective preoperative tumor embolization. The multifaceted role of tumor embolization ranges from adjuvant treatment in meningiomas and diffuse pontine gliomas to primary treatment in retinoblastoma, with selective ophthalmic artery chemosurgery.

Through knowledge of intracranial and extracranial anastomotic pathways, understanding of vascular anatomy, identification of high-flow shunts within the tumor, and awareness of personal and procedural limitations all help to minimize adverse outcomes. Utilizing cerebral hemispheric dose calculations and appropriate catheter placement and injection techniques is vital to enable an increase in local dosage using IA chemotherapy and improve bioavailability, with neurotoxicity comparable to conventional intravenous chemotherapy. With the developments in technology for early tumor detection and radio isotope labeling of target tumor cells based on angioneogenesis and tumor-specific characteristics, IA chemotherapy is evolving as a promising selective target tumor treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hilal SK, Michelsen JW. Therapeutic percutaneous embolization for extra-axial vascular lesions of the head, neck, and spine. J Neurosurg. 1975;43(3):275–87. https://doi.org/10.3171/jns.1975.43.3.0275.

    Article  PubMed  CAS  Google Scholar 

  2. Vaidya S, Tozer KR, Chen J. An overview of embolic agents. Semin Interv Radiol. 2008;25(3):204–15. https://doi.org/10.1055/s-0028-1085930.

    Article  Google Scholar 

  3. Deshmukh VR, Fiorella DJ, McDougall CG, Spetzler RF, Albuquerque FC. Preoperative embolization of central nervous system tumors. Neurosurg Clin N Am. 2005;16(2):411–432., xi. https://doi.org/10.1016/j.nec.2004.08.010.

    Article  PubMed  Google Scholar 

  4. Luessenhop AJ, Gibbs M, Velasquez AC. Cerebrovascular response to emboli. Observations in patients with arteriovenous malformations. Arch Neurol. 1962;7:264–74.

    Article  CAS  PubMed  Google Scholar 

  5. George B, Casasco A, Deffrennes D, Houdart E. Intratumoral embolization of intracranial and extracranial tumors: technical note. Neurosurgery. 1994;35(4):771–3. discussion 773–774

    Article  CAS  PubMed  Google Scholar 

  6. Duffis EJ, Gandhi CD, Prestigiacomo CJ, et al. Head, neck, and brain tumor embolization guidelines. J Neurointerventional Surg. 2012;4(4):251–5. https://doi.org/10.1136/neurintsurg-2012-010350.

    Article  Google Scholar 

  7. Abud DG, Mounayer C, Benndorf G, Piotin M, Spelle L, Moret J. Intratumoral injection of cyanoacrylate glue in head and neck paragangliomas. Am J Neuroradiol. 2004;25(9):1457–62.

    PubMed  Google Scholar 

  8. Quadros RS, Gallas S, Delcourt C, Dehoux E, Scherperel B, Pierot L. Preoperative embolization of a cervicodorsal paraganglioma by direct percutaneous injection of onyx and endovascular delivery of particles. Am J Neuroradiol. 2006;27(9):1907–9.

    PubMed  CAS  Google Scholar 

  9. Casasco A, Herbreteau D, Houdart E, et al. Devascularization of craniofacial tumors by percutaneous tumor puncture. Am J Neuroradiol. 1994;15(7):1233–9.

    PubMed  CAS  Google Scholar 

  10. Sekhar LN, Biswas A, Hallam D, Kim LJ, Douglas J, Ghodke B. Neuroendovascular management of tumors and vascular malformations of the head and neck. Neurosurg Clin N Am. 2009;20(4):453–85. https://doi.org/10.1016/j.nec.2009.07.007.

    Article  PubMed  Google Scholar 

  11. Chaloupka JC, Mangla S, Huddle DC, et al. Evolving experience with direct puncture therapeutic embolization for adjunctive and palliative management of head and neck hypervascular neoplasms. Laryngoscope. 1999;109(11):1864–72. https://doi.org/10.1097/00005537-199911000-00028.

    Article  PubMed  CAS  Google Scholar 

  12. Jindal G, Gemmete J, Gandhi D. Interventional neuroradiology applications in otolaryngology, head and neck surgery. Otolaryngol Clin N Am. 2012;45(6):1423–49. https://doi.org/10.1016/j.otc.2012.08.010.

    Article  Google Scholar 

  13. Casasco A, Houdart E, Biondi A, et al. Major complications of percutaneous embolization of skull-base tumors. Am J Neuroradiol. 1999;20(1):179–81.

    PubMed  CAS  Google Scholar 

  14. Dean BL, Flom RA, Wallace RC, et al. Efficacy of endovascular treatment of meningiomas: evaluation with matched samples. Am J Neuroradiol. 1994;15(9):1675–80.

    PubMed  CAS  Google Scholar 

  15. Gupta R, Thomas AJ, Horowitz M. Intracranial head and neck tumors: endovascular considerations, present and future. Neurosurgery. 2006;59(5 Suppl 3):S251–60. discussion S3–S13. doi:10.1227/01.NEU.0000239249.65742.1C

    PubMed  Google Scholar 

  16. Macpherson P. The value of pre-operative embolisation of meningioma estimated subjectively and objectively. Neuroradiology. 1991;33(4):334–7.

    Article  CAS  PubMed  Google Scholar 

  17. American Society of Interventional and Therapeutic Neuroradiology. Head, neck, and brain tumor embolization. Am J Neuroradiol. 2001;22(8 Suppl):S14–5.

    Google Scholar 

  18. Akai H, Kiryu S, Takao H, et al. Efficacy of double-arterial phase gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced liver magnetic resonance imaging compared with double-arterial phase multi-detector row helical computed tomography. J Comput Assist Tomogr. 2009;33(6):887–92. https://doi.org/10.1097/RCT.0b013e3181a1ca7e.

    Article  PubMed  Google Scholar 

  19. Altenbernd J, Heusner TA, Ringelstein A, Ladd SC, Forsting M, Antoch G. Dual-energy-CT of hypervascular liver lesions in patients with HCC: investigation of image quality and sensitivity. Eur Radiol. 2011;21(4):738–43. https://doi.org/10.1007/s00330-010-1964-7.

    Article  PubMed  Google Scholar 

  20. Aschenbach R, Basche S, Esser D, Vogl TJ. Usefulness of ultrafast dynamic 3D-T1w data acquisition in detection of hypervascular lesions of the middle ear: first experience. Eur J Radiol. 2012;81(2):257–61. https://doi.org/10.1016/j.ejrad.2010.11.011.

    Article  PubMed  Google Scholar 

  21. Chung J, Yu J-S, Kim DJ, Chung J-J, Kim JH, Kim KW. Hypervascular hepatocellular carcinoma in the cirrhotic liver: diffusion-weighted imaging versus superparamagnetic iron oxide-enhanced MRI. Magn Reson Imaging. 2011;29(9):1235–43. https://doi.org/10.1016/j.mri.2011.07.025.

    Article  PubMed  Google Scholar 

  22. de Bazelaire C, Calmon R, Chapellier M, Pluvinage A, Frija J, de Kerviler E. CT and MRI imaging in tumoral angiogenesis. Bull Cancer. 2010;97(1):79–90. https://doi.org/10.1684/bdc.2010.0961.

    Article  PubMed  Google Scholar 

  23. Kanematsu M, Kondo H, Goshima S, et al. Imaging liver metastases: review and update. Eur J Radiol. 2006;58(2):217–28. https://doi.org/10.1016/j.ejrad.2005.11.041.

    Article  PubMed  Google Scholar 

  24. Silva AC, Evans JM, McCullough AE, Jatoi MA, Vargas HE, Hara AK. MR imaging of hypervascular liver masses: a review of current techniques. Radiographics. 2009;29(2):385–402. https://doi.org/10.1148/rg.292085123.

    Article  PubMed  Google Scholar 

  25. Ellis JA, D’Amico R, Sisti MB, et al. Pre-operative intracranial meningioma embolization. Expert Rev Neurother. 2011;11(4):545–56. https://doi.org/10.1586/ern.11.29.

    Article  PubMed  Google Scholar 

  26. Chun JY, McDermott MW, Lamborn KR, Wilson CB, Higashida R, Berger MS. Delayed surgical resection reduces intraoperative blood loss for embolized meningiomas. Neurosurgery. 2002;50(6):1231–5. discussion 1235–1237

    PubMed  Google Scholar 

  27. Kuroiwa T, Tanaka H, Ohta T, Tsutsumi A. Preoperative embolization of highly vascular brain tumors: clinical and histopathological findings. Noshuyo Byori. 1996;13(1):27–36.

    PubMed  CAS  Google Scholar 

  28. Brodsky SV, Mendelev N, Melamed M, Ramaswamy G. Vascular density and VEGF expression in hepatic lesions. J Gastrointest Liver Dis. 2007;16(4):373–7.

    Google Scholar 

  29. Chao Y, Li C-P, Chau G-Y, et al. Prognostic significance of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin in patients with resectable hepatocellular carcinoma after surgery. Ann Surg Oncol. 2003;10(4):355–62.

    Article  PubMed  Google Scholar 

  30. Finn RS, Zhu AX. Targeting angiogenesis in hepatocellular carcinoma: focus on VEGF and bevacizumab. Expert Rev Anticancer Ther. 2009;9(4):503–9. https://doi.org/10.1586/era.09.6.

    Article  PubMed  CAS  Google Scholar 

  31. Grunstein J, Masbad JJ, Hickey R, Giordano F, Johnson RS. Isoforms of vascular endothelial growth factor act in a coordinate fashion to recruit and expand tumor vasculature. Mol Cell Biol. 2000;20(19):7282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ikeda N, Adachi M, Taki T, et al. Prognostic significance of angiogenesis in human pancreatic cancer. Br J Cancer. 1999;79(9–10):1553–63. https://doi.org/10.1038/sj.bjc.6690248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Pauw BK, Makek MS, Fisch U, Valavanis A. Preoperative embolization of paragangliomas (glomus tumors) of the head and neck: histopathologic and clinical features. Skull Base Surg. 1993;3(1):37–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qureshi AI. Endovascular treatment of cerebrovascular diseases and intracranial neoplasms. Lancet. 2004;363(9411):804–13. https://doi.org/10.1016/S0140-6736(04)15697-3.

    Article  PubMed  Google Scholar 

  35. Tadavarthy SM, Knight L, Ovitt TW, Snyder C, Amplatz K. Therapeutic transcatheter arterial embolization. Radiology. 1974;112(1):13–6. https://doi.org/10.1148/112.1.13.

    Article  PubMed  CAS  Google Scholar 

  36. Horton JA, Marano GD, Kerber CW, Jenkins JJ, Davis S. Polyvinyl alcohol foam-Gelfoam for therapeutic embolization: a synergistic mixture. Am J Neuroradiol. 1983;4(2):143–7.

    PubMed  CAS  Google Scholar 

  37. Loffroy R, Guiu B, D’Athis P, et al. Arterial embolotherapy for endoscopically unmanageable acute gastroduodenal hemorrhage: predictors of early rebleeding. Clin Gastroenterol Hepatol. 2009;7(5):515–23. https://doi.org/10.1016/j.cgh.2009.02.003.

    Article  PubMed  Google Scholar 

  38. Latchaw RE, Gold LH. Polyvinyl foam embolization of vascular and neoplastic lesions of the head, neck, and spine. Radiology. 1979;131(3):669–79. https://doi.org/10.1148/131.3.669.

    Article  PubMed  CAS  Google Scholar 

  39. Djindjian R, Cophignon J, Théron J, Merland JJ, Houdart R. Embolization by superselective arteriography from the femoral route in neuroradiology. Review of 60 cases. 1. Technique, indications, complications. Neuroradiology. 1973;6(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  40. Speakman TJ. Internal occlusion of a carotid-cavernous fistula. J Neurosurg. 1964;21:303–5. https://doi.org/10.3171/jns.1964.21.4.0303.

    Article  PubMed  CAS  Google Scholar 

  41. Light RU, Prentice HR. Gelatin sponge; surgical investigation of a new matrix used in conjunction with thrombin in hemostasis. Arch Surg. 1945;51:69–77.

    Article  CAS  PubMed  Google Scholar 

  42. Tomashefski JF, Cohen AM, Doershuk CF. Longterm histopathologic follow-up of bronchial arteries after therapeutic embolization with polyvinyl alcohol (Ivalon) in patients with cystic fibrosis. Hum Pathol. 1988;19(5):555–61.

    Article  PubMed  Google Scholar 

  43. Bendszus M, Klein R, Burger R, Warmuth-Metz M, Hofmann E, Solymosi L. Efficacy of trisacryl gelatin microspheres versus polyvinyl alcohol particles in the preoperative embolization of meningiomas. Am J Neuroradiol. 2000;21(2):255–61.

    PubMed  CAS  Google Scholar 

  44. Rodiek SO, Stölzle A, Lumenta CB. Preoperative embolization of intracranial meningiomas with Embosphere microspheres. Minim Invasive Neurosurg. 2004;47(5):299–305. https://doi.org/10.1055/s-2004-830069.

    Article  PubMed  CAS  Google Scholar 

  45. Bendszus M, Martin-Schrader I, Schlake HP, Solymosi L. Embolisation of intracranial meningiomas without subsequent surgery. Neuroradiology. 2003;45(7):451–5. https://doi.org/10.1007/s00234-003-1005-1.

    Article  PubMed  CAS  Google Scholar 

  46. Hamada J, Kai Y, Nagahiro S, Hashimoto N, Iwata H, Ushio Y. Embolization with cellulose porous beads, II: clinical trial. Am J Neuroradiol. 1996;17(10):1901–6.

    PubMed  CAS  Google Scholar 

  47. Kai Y, Hamada J-I, Morioka M, et al. Clinical evaluation of cellulose porous beads for the therapeutic embolization of meningiomas. Am J Neuroradiol. 2006;27(5):1146–50.

    PubMed  CAS  Google Scholar 

  48. Pollak JS, White RI. The use of cyanoacrylate adhesives in peripheral embolization. J Vasc Interv Radiol. 2001;12(8):907–13.

    Article  CAS  PubMed  Google Scholar 

  49. Shi Z-S, Feng L, Jiang X-B, Huang Q, Yang Z, Huang Z-S. Therapeutic embolization of meningiomas with onyx for delayed surgical resection. Surg Neurol. 2008;70(5):478–81. https://doi.org/10.1016/j.surneu.2007.05.031.

    Article  PubMed  Google Scholar 

  50. Lefkowitz M, Giannotta SL, Hieshima G, et al. Embolization of neurosurgical lesions involving the ophthalmic artery. Neurosurgery. 1998;43(6):1298–303.

    PubMed  CAS  Google Scholar 

  51. Eller JL, Hopkins LN. Use of vascular plug devices in the management of neurovascular emergencies. World Neurosurg. 2015;83(1):9–10. https://doi.org/10.1016/j.wneu.2013.09.031.

    Article  PubMed  Google Scholar 

  52. Mangini M, Laganà D, Fontana F, et al. Use of Amplatzer vascular plug (AVP) in emergency embolisation: preliminary experience and review of literature. Emerg Radiol. 2008;15(3):153–60. https://doi.org/10.1007/s10140-007-0696-8.

    Article  PubMed  Google Scholar 

  53. Shankar JJS, Maloney WJ, Vandorpe R. Amplatzer vascular plug for occlusion of parent artery in carotid blowout with active extravasation. Interv Neuroradiol. 2011;17(2):224–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Geyik S, Yavuz K, Ergun O, Koc O, Cekirge S, Saatci I. Endovascular treatment of intracranial aneurysms with bioactive Cerecyte coils: effects on treatment stability. Neuroradiology. 2008;50(9):787–93. https://doi.org/10.1007/s00234-008-0399-1.

    Article  PubMed  Google Scholar 

  55. Gralla J, Schroth G, Kickuth R, El-Koussy M, Do D-D, Brekenfeld C. Closing the gap between coil and balloon in the neurointerventional armamentarium? Initial clinical experience with a nitinol vascular occlusion plug. Neuroradiology. 2008;50(8):709–14. https://doi.org/10.1007/s00234-008-0396-4.

    Article  PubMed  Google Scholar 

  56. Ong CK, Lam DV, Ong MT, Power MA, Parkinson RJ, Wenderoth JD. Neuroapplication of amplatzer vascular plug for therapeutic sacrifice of major craniocerebral arteries: an initial clinical experience. Ann Acad Med Singap. 2009;38(9):763–8.

    PubMed  Google Scholar 

  57. Schirmer CM, Hoit DA, Malek AM. Amplatzer-onyx sandwich: a method for impermeable proximal cerebral vessel occlusion. J Vasc Interv Radiol. 2008;19(3):459–60. https://doi.org/10.1016/j.jvir.2007.11.017.

    Article  PubMed  Google Scholar 

  58. Maran AG, Amin M, Wilson JA. Radical neck dissection: a 19-year experience. J Laryngol Otol. 1989;103(8):760–4.

    Article  CAS  PubMed  Google Scholar 

  59. Chaloupka JC, Putman CM, Citardi MJ, Ross DA, Sasaki CT. Endovascular therapy for the carotid blowout syndrome in head and neck surgical patients: diagnostic and managerial considerations. Am J Neuroradiol. 1996;17(5):843–52.

    PubMed  CAS  Google Scholar 

  60. Citardi MJ, Chaloupka JC, Son YH, Ariyan S, Sasaki CT. Management of carotid artery rupture by monitored endovascular therapeutic occlusion (1988-1994). Laryngoscope. 1995;105(10):1086–92. https://doi.org/10.1288/00005537-199510000-00015.

    Article  PubMed  CAS  Google Scholar 

  61. Patsalides A, Fraser JF, Smith MJ, Kraus D, Gobin YP, Riina HA. Endovascular treatment of carotid blowout syndrome: who and how to treat. J Neurointerv Surg. 2010;2(1):87–93. https://doi.org/10.1136/jnis.2009.001131.

    Article  PubMed  CAS  Google Scholar 

  62. Wan WS, Lai V, Lau HY, Wong YC, Poon WL, Tan CB. Endovascular treatment paradigm of carotid blowout syndrome: review of 8-years experience. Eur J Radiol. 2013;82(1):95–9. https://doi.org/10.1016/j.ejrad.2011.01.061.

    Article  PubMed  Google Scholar 

  63. Chang FC, Luo CB, Lirng JF, et al. Complications of carotid blowout syndrome in patients with head and neck cancers treated by covered stents. Interv Neuroradiol. 2008;14(Suppl 2):29–33.

    Article  PubMed  Google Scholar 

  64. Wiemels J, Wrensch M, Claus EB. Epidemiology and etiology of meningioma. J Neuro-Oncol. 2010;99(3):307–14. https://doi.org/10.1007/s11060-010-0386-3.

    Article  Google Scholar 

  65. Gruber A, Killer M, Mazal P, Bavinzski G, Richling B. Preoperative embolization of intracranial meningiomas: a 17-years single center experience. Minim Invasive Neurosurg. 2000;43(1):18–29. https://doi.org/10.1055/s-2000-8812.

    Article  PubMed  CAS  Google Scholar 

  66. Hekster RE, Matricali B, Luyendijk W. Presurgical transfemoral catheter embolization to reduce operative blood loss. Technical note. J Neurosurg. 1974;41(3):396–8. https://doi.org/10.3171/jns.1974.41.3.0396.

    Article  PubMed  CAS  Google Scholar 

  67. Manelfe C, Lasjaunias P, Ruscalleda J. Preoperative embolization of intracranial meningiomas. Am J Neuroradiol. 1986;7(5):963–72.

    PubMed  CAS  Google Scholar 

  68. Richter HP, Schachenmayr W. Preoperative embolization of intracranial meningiomas. Neurosurgery. 1983;13(3):261–8.

    Article  CAS  PubMed  Google Scholar 

  69. Teasdale E, Patterson J, McLellan D, Macpherson P. Subselective preoperative embolization for meningiomas. A radiological and pathological assessment. J Neurosurg. 1984;60(3):506–11. https://doi.org/10.3171/jns.1984.60.3.0506.

    Article  PubMed  CAS  Google Scholar 

  70. Neumann HP, Eggert HR, Weigel K, Friedburg H, Wiestler OD, Schollmeyer P. Hemangioblastomas of the central nervous system. A 10-year study with special reference to von Hippel-Lindau syndrome. J Neurosurg. 1989;70(1):24–30. https://doi.org/10.3171/jns.1989.70.1.0024.

    Article  PubMed  CAS  Google Scholar 

  71. Eskridge JM, McAuliffe W, Harris B, Kim DK, Scott J, Winn HR. Preoperative endovascular embolization of craniospinal hemangioblastomas. Am J Neuroradiol. 1996;17(3):525–31.

    PubMed  CAS  Google Scholar 

  72. Horton JA, Eelkema E, Albright AL. Preoperative embolization of a hemangioblastoma. Am J Neuroradiol. 1989;10(1):203.

    PubMed  CAS  Google Scholar 

  73. Jagannathan J, Lonser RR, Smith R, DeVroom HL, Oldfield EH. Surgical management of cerebellar hemangioblastomas in patients with von Hippel-Lindau disease. J Neurosurg. 2008;108(2):210–22. https://doi.org/10.3171/JNS/2008/108/2/0210.

    Article  PubMed  Google Scholar 

  74. Kanno H, Yamamoto I, Nishikawa R, et al. Spinal cord hemangioblastomas in von Hippel-Lindau disease. Spinal Cord. 2009;47(6):447–52. https://doi.org/10.1038/sc.2008.151.

    Article  PubMed  CAS  Google Scholar 

  75. Parker F, Aghakhani N, Ducati LG, et al. Results of microsurgical treatment of medulla oblongata and spinal cord hemangioblastomas: a comparison of two distinct clinical patient groups. J Neuro-Oncol. 2009;93(1):133–7. https://doi.org/10.1007/s11060-009-9861-0.

    Article  Google Scholar 

  76. Takeuchi S, Tanaka R, Fujii Y, Abe H, Ito Y. Surgical treatment of hemangioblastomas with presurgical endovascular embolization. Neurol Med Chir (Tokyo). 2001;41(5):246–51. discussion 251–252

    Article  CAS  Google Scholar 

  77. Abo-Al Hassan A, Ismail M, Panda SM. Pre-operative endovascular embolization of a cerebellar haemangioblastoma. A case report. Med Princ Pract. 2006;15(6):459–62. https://doi.org/10.1159/000095495.

    Article  PubMed  CAS  Google Scholar 

  78. Erickson D, Kudva YC, Ebersold MJ, et al. Benign paragangliomas: clinical presentation and treatment outcomes in 236 patients. J Clin Endocrinol Metab. 2001;86(11):5210–6. https://doi.org/10.1210/jcem.86.11.8034.

    Article  PubMed  CAS  Google Scholar 

  79. Persky MS, Setton A, Niimi Y, Hartman J, Frank D, Berenstein A. Combined endovascular and surgical treatment of head and neck paragangliomas – a team approach. Head Neck. 2002;24(5):423–31. https://doi.org/10.1002/hed.10068.

    Article  PubMed  Google Scholar 

  80. Welander J, Söderkvist P, Gimm O. Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr Relat Cancer. 2011;18(6):R253–76. https://doi.org/10.1530/ERC-11-0170.

    Article  PubMed  CAS  Google Scholar 

  81. Barnes L, Hunt J, Michaels L. Tumours of the paraganglionic system: introduction. In: World Health Organization classification of tumours: pathology and genetics of head and neck tumours. Lyon: IARC; 2005. p. 362.

    Google Scholar 

  82. Kretzschmar K, Milewski C, Dienes HP. The risk of endocrine activation in interventional procedures on paraganglioma of the head and neck. Radiology. 1988;28(11):497–502.

    CAS  Google Scholar 

  83. Tikkakoski T, Luotonen J, Leinonen S, et al. Preoperative embolization in the management of neck paragangliomas. Laryngoscope. 1997;107(6):821–6.

    Article  CAS  PubMed  Google Scholar 

  84. Gullane PJ, Davidson J, O’Dwyer T, Forte V. Juvenile angiofibroma: a review of the literature and a case series report. Laryngoscope. 1992;102(8):928–33. https://doi.org/10.1288/00005537-199208000-00014.

    Article  PubMed  CAS  Google Scholar 

  85. Garcia-Cervigon E, Bien S, Rüfenacht D, et al. Pre-operative embolization of naso-pharyngeal angiofibromas. Report of 58 cases. Neuroradiology. 1988;30(6):556–60.

    Article  CAS  PubMed  Google Scholar 

  86. Neel HB, Whicker JH, Devine KD, Weiland LH. Juvenile angiofibroma. Review of 120 cases. Am J Surg. 1973;126(4):547–56.

    Article  PubMed  Google Scholar 

  87. English GM, Hemenway WG, Cundy RL. Surgical treatment of invasive angiofibroma. Arch Otolaryngol. 1972;96(4):312–8.

    Article  CAS  PubMed  Google Scholar 

  88. Gemmete JJ, Ansari SA, McHugh J, Gandhi D. Embolization of vascular tumors of the head and neck. Neuroimaging Clinics. 2009;19(2):181–98. https://doi.org/10.1016/j.nic.2009.01.008.

    Article  PubMed  Google Scholar 

  89. Beltramello A, Benati A, Perini S, Maschio A. Interventional angiography in neuropediatrics. Childs Nerv Syst. 1989;5(2):87–93.

    Article  CAS  PubMed  Google Scholar 

  90. Christensen NP, Smith DS, Barnwell SL, Wax MK. Arterial embolization in the management of posterior epistaxis. Otolaryngol--Head Neck Surg. 2005;133(5):748–53. https://doi.org/10.1016/j.otohns.2005.07.041.

    Article  PubMed  Google Scholar 

  91. Fields JN, Halverson KJ, Devineni VR, Simpson JR, Perez CA. Juvenile nasopharyngeal angiofibroma: efficacy of radiation therapy. Radiology. 1990;176(1):263–5. https://doi.org/10.1148/radiology.176.1.2162070.

    Article  PubMed  CAS  Google Scholar 

  92. Batsakis JG, Klopp CT, Newman W. Fibrosarcoma arising in a juvenile nasopharyngeal angiofibroma following extensive radiation therapy. Am Surg. 1955;21(8):786–93.

    PubMed  CAS  Google Scholar 

  93. Moulin G, Chagnaud C, Gras R, et al. Juvenile nasopharyngeal angiofibroma: comparison of blood loss during removal in embolized group versus nonembolized group. Cardiovasc Intervent Radiol. 1995;18(3):158–61.

    PubMed  CAS  Google Scholar 

  94. Prabhu VC, Bilsky MH, Jambhekar K, et al. Results of preoperative embolization for metastatic spinal neoplasms. J Neurosurg. 2003;98(2 Suppl):156–64.

    PubMed  Google Scholar 

  95. Berkefeld J, Scale D, Kirchner J, Heinrich T, Kollath J. Hypervascular spinal tumors: influence of the embolization technique on perioperative hemorrhage. Am J Neuroradiol. 1999;20(5):757–63.

    PubMed  CAS  Google Scholar 

  96. Manke C, Bretschneider T, Lenhart M, et al. Spinal metastases from renal cell carcinoma: effect of preoperative particle embolization on intraoperative blood loss. Am J Neuroradiol. 2001;22(5):997–1003.

    PubMed  CAS  Google Scholar 

  97. Kallmes DF, Evans AJ, Kaptain GJ, et al. Hemorrhagic complications in embolization of a meningioma: case report and review of the literature. Neuroradiology. 1997;39(12):877–80.

    Article  CAS  PubMed  Google Scholar 

  98. Adler JR, Upton J, Wallman J, Winston KR. Management and prevention of necrosis of the scalp after embolization and surgery for meningioma. Surg Neurol. 1986;25(4):357–60.

    Article  CAS  PubMed  Google Scholar 

  99. Chan RC, Thompson GB. Ischemic necrosis of the scalp after preoperative embolization of meningeal tumors. Neurosurgery. 1984;15(1):76–81.

    Article  CAS  PubMed  Google Scholar 

  100. Wright JC. Cancer chemotherapy: past, present, and future – part I. J Natl Med Assoc. 1984;76(8):773–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Levin MH, Gombos DS, O’Brien JM. Intra-arterial chemotherapy for advanced retinoblastoma: is the time right for a prospective clinical trial? Arch Ophthalmol. 2011;129(11):1487–9. https://doi.org/10.1001/archophthalmol.2011.304.

    Article  PubMed  Google Scholar 

  102. Dropcho EJ. Novel chemotherapeutic approaches to brain tumors. Hematol Oncol Clin North Am. 2001;15(6):1027–52.

    Article  CAS  PubMed  Google Scholar 

  103. Gelman M, Chakeres DW, Newton HB. Brain tumors: complications of cerebral angiography accompanied by intraarterial chemotherapy. Radiology. 1999;213(1):135–40. https://doi.org/10.1148/radiology.213.1.r99oc04135.

    Article  PubMed  CAS  Google Scholar 

  104. Kochi M, Ushio Y. Chemo-radiotherapy for malignant brain tumors. Gan To Kagaku Ryoho. 2002;29(5):669–76.

    PubMed  Google Scholar 

  105. Kumagai T, Takeda N, Fukase S, et al. Intra-arterial chemotherapy for malignant tumors of head and neck region using three types of modified injection method. Interv Neuroradiol. 2003;9(Suppl 1):113–23.

    Article  CAS  PubMed  Google Scholar 

  106. Lallana EC, Abrey LE. Update on the therapeutic approaches to brain tumors. Expert Rev Anticancer Ther. 2003;3(5):655–70. https://doi.org/10.1586/14737140.3.5.655.

    Article  PubMed  CAS  Google Scholar 

  107. Newton HB. Intra-arterial chemotherapy of primary brain tumors. Curr Treat Options in Oncol. 2005;6(6):519–30.

    Article  Google Scholar 

  108. Cloughesy TF, Gobin YP, Black KL, et al. Intra-arterial carboplatin chemotherapy for brain tumors: a dose escalation study based on cerebral blood flow. J Neuro-Oncol. 1997;35(2):121–31.

    Article  CAS  Google Scholar 

  109. Stewart DJ, Grahovac Z, Hugenholtz H, et al. Feasibility study of intraarterial vs intravenous cisplatin, BCNU, and teniposide combined with systemic cisplatin, teniposide, cytosine arabinoside, glycerol and mannitol in the treatment of primary and metastatic brain tumors. J Neuro-Oncol. 1993;17(1):71–9.

    Article  CAS  Google Scholar 

  110. Abramson DH. Chemosurgery for retinoblastoma: what we know after 5 years. Arch Ophthalmol. 2011;129(11):1492–4. https://doi.org/10.1001/archophthalmol.2011.354.

    Article  PubMed  Google Scholar 

  111. Abramson DH, Dunkel IJ, Brodie SE, Kim JW, Gobin YP. A phase I/II study of direct intraarterial (ophthalmic artery) chemotherapy with melphalan for intraocular retinoblastoma initial results. Ophthalmology. 2008;115(8):1398–404. https://doi.org/10.1016/j.ophtha.2007.12.014.

    Article  PubMed  Google Scholar 

  112. Abramson DH, Marr BP, Brodie SE, Dunkel I, Palioura S, Gobin YP. Ophthalmic artery chemosurgery for less advanced intraocular retinoblastoma: five year review. PLoS One. 2012;7(4):e34120. https://doi.org/10.1371/journal.pone.0034120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Bianciotto C, Shields CL, Iturralde JC, Sarici A, Jabbour P, Shields JA. Fluorescein angiographic findings after intra-arterial chemotherapy for retinoblastoma. Ophthalmology. 2012;119(4):843–9. https://doi.org/10.1016/j.ophtha.2011.09.040.

    Article  PubMed  Google Scholar 

  114. Choi S, Han JW, Kim H, et al. Combined chemotherapy and intra-arterial chemotherapy of retinoblastoma. Korean J Pediatr. 2013;56(6):254–9. https://doi.org/10.3345/kjp.2013.56.6.254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Francis JH, Gobin YP, Brodie SE, Marr BP, Dunkel IJ, Abramson DH. Experience of intra-arterial chemosurgery with single agent carboplatin for retinoblastoma. Br J Ophthalmol. 2012;96(9):1270–1. https://doi.org/10.1136/bjophthalmol-2012-301686.

    Article  PubMed  Google Scholar 

  116. Gobin YP, Dunkel IJ, Marr BP, Brodie SE, Abramson DH. Intra-arterial chemotherapy for the management of retinoblastoma: four-year experience. Arch Ophthalmol. 2011;129(6):732–7. https://doi.org/10.1001/archophthalmol.2011.5.

    Article  PubMed  Google Scholar 

  117. Marr BP, Brodie SE, Dunkel IJ, Gobin YP, Abramson DH. Three-drug intra-arterial chemotherapy using simultaneous carboplatin, topotecan and melphalan for intraocular retinoblastoma: preliminary results. Br J Ophthalmol. 2012;96(10):1300–3. https://doi.org/10.1136/bjophthalmol-2012-301925.

    Article  PubMed  Google Scholar 

  118. Shields CL, Fulco EM, Arias JD, et al. Retinoblastoma frontiers with intravenous, intra-arterial, periocular, and intravitreal chemotherapy. Eye (Lond). 2013;27(2):253–64. https://doi.org/10.1038/eye.2012.175.

    Article  CAS  Google Scholar 

  119. Klufas MA, Gobin YP, Marr B, Brodie SE, Dunkel IJ, Abramson DH. Intra-arterial chemotherapy as a treatment for intraocular retinoblastoma: alternatives to direct ophthalmic artery catheterization. Am J Neuroradiol. 2012;33(8):1608–14. https://doi.org/10.3174/ajnr.A3019.

    Article  PubMed  CAS  Google Scholar 

  120. Jabbour P, Chalouhi N, Tjoumakaris S, et al. Pearls and pitfalls of intraarterial chemotherapy for retinoblastoma. J Neurosurg Pediatr. 2012;10(3):175–81. https://doi.org/10.3171/2012.5.PEDS1277.

    Article  PubMed  Google Scholar 

  121. Gobin YP, Cloughesy TF, Chow KL, et al. Intraarterial chemotherapy for brain tumors by using a spatial dose fractionation algorithm and pulsatile delivery. Radiology. 2001;218(3):724–32. https://doi.org/10.1148/radiology.218.3.r01mr41724.

    Article  PubMed  CAS  Google Scholar 

  122. Lehane DE, Bryan RN, Horowitz B, et al. Intraarterial cis-platinum chemotherapy for patients with primary and metastatic brain tumors. Cancer Drug Deliv. 1983;1(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  123. Tfayli A, Hentschel P, Madajewicz S, et al. Toxicities related to intraarterial infusion of cisplatin and etoposide in patients with brain tumors. J Neuro-Oncol. 1999;42(1):73–7.

    Article  CAS  Google Scholar 

  124. Ensminger WD, Gyves JW. Regional chemotherapy of neoplastic diseases. Pharmacol Ther. 1983;21(2):277–93.

    Article  CAS  PubMed  Google Scholar 

  125. Hodozuka A, Sako K, Nakai H, Tomabechi M, Suzuki N, Yonemasu Y. Delivery of a novel nitrosourea, MCNU, to the brain tissue in glioma-bearing rats. Intracarotid versus intravenous infusion. J Neuro-Oncol. 1993;15(1):79–86.

    Article  CAS  Google Scholar 

  126. Collins JM. Pharmacologic rationale for regional drug delivery. J Clin Oncol. 1984;2(5):498–504. https://doi.org/10.1200/jco.1984.2.5.498.

    Article  PubMed  CAS  Google Scholar 

  127. Stewart DJ. Pros and cons of intra-arterial chemotherapy. Oncology (Williston Park). 1989;3(10):20–6. discussion 26–27, 30, 32

    Google Scholar 

  128. Blacklock JB, Wright DC, Dedrick RL, et al. Drug streaming during intra-arterial chemotherapy. J Neurosurg. 1986;64(2):284–91. https://doi.org/10.3171/jns.1986.64.2.0284.

    Article  PubMed  CAS  Google Scholar 

  129. Lutz RJ, Dedrick RL, Boretos JW, Oldfield EH, Blacklock JB, Doppman JL. Mixing studies during intracarotid artery infusions in an in vitro model. J Neurosurg. 1986;64(2):277–83. https://doi.org/10.3171/jns.1986.64.2.0277.

    Article  PubMed  CAS  Google Scholar 

  130. Lutz RJ, Epstein AH, Cook JA, Dedrick RL. An in vitro flow model to study streaming during pelvic intra-arterial drug infusions. Gynecol Oncol. 1995;59(2):288–96. https://doi.org/10.1006/gyno.1995.0024.

    Article  PubMed  CAS  Google Scholar 

  131. Lutz RJ, Warren K, Balis F, Patronas N, Dedrick RL. Mixing during intravertebral arterial infusions in an in vitro model. J Neuro-Oncol. 2002;58(2):95–106.

    Article  Google Scholar 

  132. Lutz RJ, Miller DL. Mixing studies during hepatic artery infusion in an in vitro model. Cancer. 1988;62(6):1066–73.

    Article  CAS  PubMed  Google Scholar 

  133. Aoki S, Terada H, Kosuda S, et al. Supraophthalmic chemotherapy with long tapered catheter: distribution evaluated with intraarterial and intravenous Tc-99m HMPAO. Radiology. 1993;188(2):347–50. https://doi.org/10.1148/radiology.188.2.8327676.

    Article  PubMed  CAS  Google Scholar 

  134. Hamza SM, Kaufman S. A vibrator prevents streaming during close-arterial infusion into the kidney. Am J Physiol Renal Physiol. 2004;286(4):F643–6. https://doi.org/10.1152/ajprenal.00290.2003.

    Article  PubMed  CAS  Google Scholar 

  135. Lambert CR, Leone JE, Rowland SM. Local drug delivery catheters: functional comparison of porous and microporous designs. Coron Artery Dis. 1993;4(5):469–75.

    Article  CAS  PubMed  Google Scholar 

  136. Saris SC, Wright DC, Oldfield EH, Blasberg RG. Intravascular streaming and variable delivery to brain following carotid artery infusions in the Sprague-Dawley rat. J Cereb Blood Flow Metab. 1988;8(1):116–20. https://doi.org/10.1038/jcbfm.1988.15.

    Article  PubMed  CAS  Google Scholar 

  137. Saris SC, Blasberg RG, Carson RE, et al. Intravascular streaming during carotid artery infusions. Demonstration in humans and reduction using diastole-phased pulsatile administration. J Neurosurg. 1991;74(5):763–72. https://doi.org/10.3171/jns.1991.74.5.0763.

    Article  PubMed  CAS  Google Scholar 

  138. Groothuis DR. The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro-Oncol. 2000;2(1):45–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Neuwelt EA, Maravilla KR, Frenkel EP, Rapaport SI, Hill SA, Barnett PA. Osmotic blood-brain barrier disruption. Computerized tomographic monitoring of chemotherapeutic agent delivery. J Clin Invest. 1979;64(2):684–8. https://doi.org/10.1172/JCI109509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Rapoport SI, Hori M, Klatzo I. Reversible osmotic opening of the blood-brain barrier. Science. 1971;173(4001):1026–8.

    Article  CAS  PubMed  Google Scholar 

  141. Schinkel AH. P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev. 1999;36(2–3):179–94.

    Article  CAS  PubMed  Google Scholar 

  142. Schinkel AH. The roles of P-glycoprotein and MRP1 in the blood-brain and blood-cerebrospinal fluid barriers. Adv Exp Med Biol. 2001;500:365–72.

    Article  CAS  PubMed  Google Scholar 

  143. Tang SC, Lagas JS, Lankheet NAG, et al. Brain accumulation of sunitinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by oral elacridar and sunitinib coadministration. Int J Cancer. 2012;130(1):223–33. https://doi.org/10.1002/ijc.26000.

    Article  PubMed  CAS  Google Scholar 

  144. Terada T, Nakamura Y, Tsuura M, et al. MRI changes in embolized meningiomas. Neuroradiology. 1992;34(2):162–7.

    Article  CAS  PubMed  Google Scholar 

  145. Doolittle ND, Petrillo A, Bell S, Cummings P, Eriksen S. Blood-brain barrier disruption for the treatment of malignant brain tumors: the National Program. J Neurosci Nurs. 1998;30(2):81–90.

    Article  CAS  PubMed  Google Scholar 

  146. Siegal T, Zylber-Katz E. Strategies for increasing drug delivery to the brain: focus on brain lymphoma. Clin Pharmacokinet. 2002;41(3):171–86. https://doi.org/10.2165/00003088-200241030-00002.

    Article  PubMed  CAS  Google Scholar 

  147. Abramson DH, Schefler AC. Update on retinoblastoma. Retina. 2004;24(6):828–48.

    Article  PubMed  Google Scholar 

  148. Gobin YP, Rosenstein LM, Marr BP, Brodie SE, Abramson DH. Radiation exposure during intra-arterial chemotherapy for retinoblastoma. Arch Ophthalmol. 2012;130(3):403–404; author reply 404–5. doi:https://doi.org/10.1001/archopthalmol.2011.2717.

    Article  PubMed  Google Scholar 

  149. Brodie SE, Pierre Gobin Y, Dunkel IJ, Kim JW, Abramson DH. Persistence of retinal function after selective ophthalmic artery chemotherapy infusion for retinoblastoma. Doc Ophthalmol. 2009;119(1):13–22. https://doi.org/10.1007/s10633-008-9164-3.

    Article  PubMed  Google Scholar 

  150. Palioura S, Gobin YP, Brodie SE, Marr BP, Dunkel IJ, Abramson DH. Ophthalmic artery chemosurgery for the management of retinoblastoma in eyes with extensive (>50%) retinal detachment. Pediatr Blood Cancer. 2012;59(5):859–64. https://doi.org/10.1002/pbc.24170.

    Article  PubMed  Google Scholar 

  151. Zuniga RM, Torcuator R, Jain R, et al. Rebound tumour progression after the cessation of bevacizumab therapy in patients with recurrent high-grade glioma. J Neuro-Oncol. 2010;99(2):237–42. https://doi.org/10.1007/s11060-010-0121-0.

    Article  CAS  Google Scholar 

  152. Matsumoto Y, Freund KB, Peiretti E, Cooney MJ, Ferrara DCAC, Yannuzzi LA. Rebound macular edema following bevacizumab (Avastin) therapy for retinal venous occlusive disease. Retina. 2007;27(4):426–31. https://doi.org/10.1097/IAE.0b013e31804a7af2.

    Article  PubMed  Google Scholar 

  153. Yasuda S, Kondo M, Kachi S, et al. Rebound of macular edema after intravitreal bevacizumab therapy in eyes with macular edema secondary to branch retinal vein occlusion. Retina. 2011;31(6):1075–82. https://doi.org/10.1097/IAE.0b013e318206cf4b.

    Article  PubMed  CAS  Google Scholar 

  154. Narita Y. Drug review: safety and efficacy of bevacizumab for glioblastoma and other brain tumors. Jpn J Clin Oncol. 2013;43(6):587–95. https://doi.org/10.1093/jjco/hyt051.

    Article  PubMed  Google Scholar 

  155. Boockvar JA, Tsiouris AJ, Hofstetter CP, et al. Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma. Clinical article. J Neurosurg. 2011;114(3):624–32. https://doi.org/10.3171/2010.9.JNS101223.

    Article  PubMed  CAS  Google Scholar 

  156. Burkhardt J-K, Shin BJ, Schlaff CD, Riina H, Boockvar JA. Cost analysis of intra-arterial versus intra-venous delivery of bevacizumab for the treatment of recurrent glioblastoma multiforme. J Exp Ther Oncol. 2011;9(3):183–6.

    PubMed  Google Scholar 

  157. Barrett T, Brechbiel M, Bernardo M, Choyke PL. MRI of tumor angiogenesis. J Magn Reson Imaging. 2007;26(2):235–49. https://doi.org/10.1002/jmri.20991.

    Article  PubMed  Google Scholar 

  158. Choyke PL, Dwyer AJ, Knopp MV. Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging. 2003;17(5):509–20. https://doi.org/10.1002/jmri.10304.

    Article  PubMed  Google Scholar 

  159. Imbesi F, Marchioni E, Benericetti E, et al. A randomized phase III study: comparison between intravenous and intraarterial ACNU administration in newly diagnosed primary glioblastomas. Anticancer Res. 2006;26(1B):553–8.

    PubMed  CAS  Google Scholar 

  160. Silvani A, Eoli M, Salmaggi A, Erbetta A, Fariselli L, Boiardi A. Intra-arterial ACNU and carboplatin versus intravenous chemotherapy with cisplatin and BCNU in newly diagnosed patients with glioblastoma. Neurol Sci. 2002;23(5):219–24. https://doi.org/10.1007/s100720200044.

    Article  PubMed  CAS  Google Scholar 

  161. Doweck I, Robbins KT, Vieira F. Analysis of risk factors predictive of distant failure after targeted chemoradiation for advanced head and neck cancer. Arch Otolaryngol Head Neck Surg. 2001;127(11):1315–8.

    Article  CAS  PubMed  Google Scholar 

  162. Sakashita T, Homma A, Oridate N, et al. Evaluation of nodal response after intra-arterial chemoradiation for node-positive head and neck cancer. Eur Arch Otorhinolaryngol. 2012;269(6):1671–6. https://doi.org/10.1007/s00405-011-1814-5.

    Article  PubMed  Google Scholar 

  163. Bertino G, Occhini A, Falco CE, et al. Concurrent intra-arterial carboplatin administration and radiation therapy for the treatment of advanced head and neck squamous cell carcinoma: short term results. BMC Cancer. 2009;9:313. https://doi.org/10.1186/1471-2407-9-313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Sassler AM, Esclamado RM, Wolf GT. Surgery after organ preservation therapy. Analysis of wound complications. Arch Otolaryngol Head Neck Surg. 1995;121(2):162–5.

    Article  CAS  PubMed  Google Scholar 

  165. Lavertu P, Bonafede JP, Adelstein DJ, et al. Comparison of surgical complications after organ-preservation therapy in patients with stage III or IV squamous cell head and neck cancer. Arch Otolaryngol Head Neck Surg. 1998;124(4):401–6.

    Article  CAS  PubMed  Google Scholar 

  166. Morgan JE, Breau RL, Suen JY, Hanna EY. Surgical wound complications after intensive chemoradiotherapy for advanced squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg. 2007;133(1):10–4. https://doi.org/10.1001/archotol.133.1.10.

    Article  PubMed  Google Scholar 

  167. Newman JP, Terris DJ, Pinto HA, Fee WE, Goode RL, Goffinet DR. Surgical morbidity of neck dissection after chemoradiotherapy in advanced head and neck cancer. Ann Otol Rhinol Laryngol. 1997;106(2):117–22.

    Article  CAS  PubMed  Google Scholar 

  168. Damascelli B, Patelli GL, Lanocita R, et al. A novel intraarterial chemotherapy using paclitaxel in albumin nanoparticles to treat advanced squamous cell carcinoma of the tongue: preliminary findings. Am J Roentgenol. 2003;181(1):253–60. https://doi.org/10.2214/ajr.181.1.1810253.

    Article  Google Scholar 

  169. Damascelli B, Patelli G, Tichá V, et al. Feasibility and efficacy of percutaneous transcatheter intraarterial chemotherapy with paclitaxel in albumin nanoparticles for advanced squamous-cell carcinoma of the oral cavity, oropharynx, and hypopharynx. J Vasc Interv Radiol. 2007;18(11):1395–403. https://doi.org/10.1016/j.jvir.2007.06.009.

    Article  PubMed  Google Scholar 

  170. Tsimberidou AM, Ye Y, Wheler J, et al. A phase I study of hepatic arterial infusion of nab-paclitaxel in combination with intravenous gemcitabine and bevacizumab for patients with advanced cancers and predominant liver metastases. Cancer Chemother Pharmacol. 2013;71(4):955–63. https://doi.org/10.1007/s00280-013-2088-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Desai N, Trieu V, Damascelli B, Soon-Shiong P. SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients. Transl Oncol. 2009;2(2):59–64.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Chlenski A, Cohn SL. Modulation of matrix remodeling by SPARC in neoplastic progression. Semin Cell Dev Biol. 2010;21(1):55–65. https://doi.org/10.1016/j.semcdb.2009.11.018.

    Article  PubMed  CAS  Google Scholar 

  173. Meyer PN, Fu K, Greiner T, et al. The stromal cell marker SPARC predicts for survival in patients with diffuse large B-cell lymphoma treated with rituximab. Am J Clin Pathol. 2011;135(1):54–61. https://doi.org/10.1309/AJCPJX4BJV9NLQHY.

    Article  PubMed  Google Scholar 

  174. Volk LD, Flister MJ, Chihade D, Desai N, Trieu V, Ran S. Synergy of nab-paclitaxel and bevacizumab in eradicating large orthotopic breast tumors and preexisting metastases. Neoplasia. 2011;13(4):327–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Happold C, Roth P, Wick W, et al. ACNU-based chemotherapy for recurrent glioma in the temozolomide era. J Neuro-Oncol. 2009;92(1):45–8. https://doi.org/10.1007/s11060-008-9728-9.

    Article  CAS  Google Scholar 

  176. Numa Y, Kasai H, Imahori T, Tsuchida T, Kawamoto K. Effective measures against side effects by increasing ACNU dose for malignant glioma: effects on digestive organs. Gan To Kagaku Ryoho. 1994;21(12):2029–33.

    PubMed  CAS  Google Scholar 

  177. Wakabayashi T, Yoshida J, Mizuno M, Kajita Y. Intratumoral microinfusion of nimustine (ACNU) for recurrent glioma. Brain Tumor Pathol. 2001;18(1):23–8.

    Article  CAS  PubMed  Google Scholar 

  178. Miyagami M, Tsubokawa T. Chemotherapy with ACNU and radiation therapy in malignant glioma in cerebral hemisphere of adult. Gan To Kagaku Ryoho. 1990;17(8 Pt 1):1447–53.

    PubMed  CAS  Google Scholar 

  179. Sonoda Y, Matsumoto K, Kakuto Y, et al. Primary CNS lymphoma treated with combined intra-arterial ACNU and radiotherapy. Acta Neurochir. 2007;149(11):1183–1189.; discussion 1189. https://doi.org/10.1007/s00701-007-1277-z.

    Article  PubMed  CAS  Google Scholar 

  180. Shih T, Lindley C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther. 2006;28(11):1779–802. https://doi.org/10.1016/j.clinthera.2006.11.015.

    Article  PubMed  CAS  Google Scholar 

  181. Riina HA, Fraser JF, Fralin S, Knopman J, Scheff RJ, Boockvar JA. Superselective intraarterial cerebral infusion of bevacizumab: a revival of interventional neuro-oncology for malignant glioma. J Exp Ther Oncol. 2009;8(2):145–50.

    PubMed  CAS  Google Scholar 

  182. Eminowicz GK, Raman R, Conibear J, Plowman PN. Bevacizumab treatment for vestibular schwannomas in neurofibromatosis type two: report of two cases, including responses after prior gamma knife and vascular endothelial growth factor inhibition therapy. J Laryngol Otol. 2012;126(1):79–82. https://doi.org/10.1017/S0022215111002805.

    Article  PubMed  CAS  Google Scholar 

  183. Plotkin SR, Merker VL, Halpin C, et al. Bevacizumab for progressive vestibular schwannoma in neurofibromatosis type 2: a retrospective review of 31 patients. Otol Neurotol. 2012;33(6):1046–52. https://doi.org/10.1097/MAO.0b013e31825e73f5.

    Article  PubMed  Google Scholar 

  184. Wong HK, Lahdenranta J, Kamoun WS, et al. Anti-vascular endothelial growth factor therapies as a novel therapeutic approach to treating neurofibromatosis-related tumors. Cancer Res. 2010;70(9):3483–93. https://doi.org/10.1158/0008-5472.CAN-09-3107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Nagulić M, Nagulic I, Vujnić V. Implantation of radioactive isotopes in intracranial tumors. Acta Chir Iugosl. 1989;36(2):203–18.

    PubMed  Google Scholar 

  186. Bargellini I, Florio F, Golfieri R, Grosso M, Lauretti DL, Cioni R. Trends in utilization of transarterial treatments for hepatocellular carcinoma: results of a survey by the Italian Society of Interventional Radiology. Cardiovasc Intervent Radiol. 2014;37(2):438–44. https://doi.org/10.1007/s00270-013-0656-5.

    Article  PubMed  Google Scholar 

  187. Lewandowski RJ, Kulik LM, Riaz A, et al. A comparative analysis of transarterial downstaging for hepatocellular carcinoma: chemoembolization versus radioembolization. Am J Transplant. 2009;9(8):1920–8. https://doi.org/10.1111/j.1600-6143.2009.02695.x.

    Article  PubMed  CAS  Google Scholar 

  188. Mulcahy MF, Lewandowski RJ, Ibrahim SM, et al. Radioembolization of colorectal hepatic metastases using yttrium-90 microspheres. Cancer. 2009;115(9):1849–58. https://doi.org/10.1002/cncr.24224.

    Article  PubMed  Google Scholar 

  189. Rafi S, Piduru SM, El-Rayes B, et al. Yttrium-90 radioembolization for unresectable standard-chemorefractory intrahepatic cholangiocarcinoma: survival, efficacy, and safety study. Cardiovasc Intervent Radiol. 2013;36(2):440–8. https://doi.org/10.1007/s00270-012-0463-4.

    Article  PubMed  Google Scholar 

  190. Ricke J, Großer O, Amthauer H. Y90-radioembolization of lung metastases via the bronchial artery: a report of 2 cases. Cardiovasc Intervent Radiol. 2013;36(6):1664–9. https://doi.org/10.1007/s00270-013-0690-3.

    Article  PubMed  Google Scholar 

  191. Salem R, Lewandowski RJ, Mulcahy MF, et al. Radioembolization for hepatocellular carcinoma using yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology. 2010;138(1):52–64. https://doi.org/10.1053/j.gastro.2009.09.006.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athos Patsalides MD, MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boddu, S.R., Link, T.W., Patsalides, A. (2018). Tumor Treatment. In: Lanzer, P. (eds) Textbook of Catheter-Based Cardiovascular Interventions. Springer, Cham. https://doi.org/10.1007/978-3-319-55994-0_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55994-0_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55993-3

  • Online ISBN: 978-3-319-55994-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics