Skip to main content

Bioresorbable Scaffold Stability and Mechanical Properties

  • Chapter
  • First Online:
Textbook of Catheter-Based Cardiovascular Interventions

Abstract

Bioresorbable scaffolds (BRSs), lauded as the fourth revolution in interventional cardiology, were introduced to address the drawbacks of current metallic drug-eluting stents (DESs), including late in-stent restenosis and permanent caging of the vessel. The concept of the BRS is to provide temporal support to the vessel during healing before being degraded and resorbed by the body, allowing vessel vasomotion to be restored. However, although BRSs have many promising advantages over metallic stents, limitations such as insufficient radial strength of the bioresorbable material and large strut profile of the device need to be overcome to enhance their performance. Thick struts affect the deliverability of the device and may cause flow disturbance, which could increase the incidence of acute thrombotic events. This chapter compares the mechanical differences between metallic DESs and BRSs and explores how factors such as crystallinity and processing influence the mechanical properties of BRSs, giving an insight into technologies that can be used to improve BRS radial strength. The bioresorption process, mechanical properties, and clinical outcomes of poly-l-lactide (PLLA)-based and magnesium-based BRSs are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kraak RP, Grundeken MJ, Koch KT, et al. Bioresorbable scaffolds for the treatment of coronary artery disease: current status and future perspective. Expert Rev Med Devices. 2014;11(5):467–80.

    Article  CAS  PubMed  Google Scholar 

  2. Navarese EP, Kowalewski M, Kandzari D, et al. First-generation versus second-generation drug-eluting stents in current clinical practice: updated evidence from a comprehensive meta-analysis of randomised clinical trials comprising 31 379 patients. Open Heart. 2014;1(1):e000064. https://doi.org/10.1136/openhrt-2014-000064. eCollection 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Colombo A, Drzewiecki J, Banning A, et al. Randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel-eluting stents for coronary artery lesions. Circulation. 2003;108(7):788–94.

    Article  CAS  PubMed  Google Scholar 

  4. Serruys PW, Ong AT, Piek JJ, et al. A randomized comparison of a durable polymer Everolimus-eluting stent with a bare metal coronary stent: the SPIRIT first trial. Euro Interven. 2005;1(1):58–65.

    Google Scholar 

  5. Gonzalo N, Macaya C. Absorbable stent: focus on clinical applications and benefits. Vasc Health Risk Manag. 2012;8:125–32.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wiebe J, Nef HM, Hamm CW. Current status of bioresorbable scaffolds in the treatment of coronary artery disease. J Am Coll Cardiol. 2014;64(23):2541–51.

    Article  CAS  PubMed  Google Scholar 

  7. Takayama T, Hiro T, Hirayama A. Stent thrombosis and drug-eluting stents. J Cardiol. 2011;58(2):92–8.

    Article  PubMed  Google Scholar 

  8. Kawaguchi R, Angiolillo DJ, Futamatsu H, et al. Stent thrombosis in the era of drug eluting stents. Minerva Cardioangiol. 2007;55(2):199–211.

    PubMed  CAS  Google Scholar 

  9. Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006;48(1):193–202.

    Article  PubMed  Google Scholar 

  10. Felix C, Everaert B, Diletti R, et al. Current status of clinically available bioresorbable scaffolds in percutaneous coronary interventions. Neth Hear J. 2015;23(3):153–60.

    Article  Google Scholar 

  11. Onuma Y, Ormiston J, Serruys PW. Bioresorbable scaffold technologies. Circ J. 2011;75(3):509–20.

    Article  CAS  PubMed  Google Scholar 

  12. Natsuaki M, Morimoto T, Furukawa Y, et al. Late adverse events after implantation of sirolimus-eluting stent and bare-metal stent: long-term (5-7 years) follow-up of the Coronary Revascularization Demonstrating Outcome study-Kyoto registry Cohort-2. Circ Cardiovasc Interv. 2014;7(2):168–79.

    Article  CAS  PubMed  Google Scholar 

  13. Sharkawi T, Cornhill F, Lafont A, et al. Intravascular bioresorbable polymeric stents: a potential alternative to current drug eluting metal stents. J Pharm Sci. 2007;96(11):2829–37.

    Article  CAS  PubMed  Google Scholar 

  14. Serruys PW, Garcia-Garcia HM, Onuma Y. From metallic cages to transient bioresorbable scaffolds: change in paradigm of coronary revascularization in the upcoming decade? Eur Heart J. 2012;33(1):16–25b.

    Article  PubMed  Google Scholar 

  15. Alfonso Lelasi MT. Current status and future perspectives on drug-eluting bioresorbable coronary scaffolds: will the paradigm of PCI shfit? EMJ Int Cardiol. 2014;1:81–90.

    Google Scholar 

  16. Spuentrup E, Ruebben A, Mahnken A, et al. Artifact-free coronary magnetic resonance angiography and coronary vessel wall imaging in the presence of a New, Metallic, Coronary Magnetic Resonance Imaging Stent. Circulation. 2005;111(8):1019–26.

    Article  PubMed  Google Scholar 

  17. Lesiak M, Araszkiewicz A. “Leaving nothing behind”: is the bioresorbable vascular scaffold a new hope for patients with coronary artery disease? Postepy Kardiol Interwencyjnej. 2014;10(4):283–8.

    PubMed  PubMed Central  Google Scholar 

  18. Stefanini GG, Taniwaki M, Windecker S. Coronary stents: novel developments. Heart. 2014;100(13):1051–61.

    Article  PubMed  Google Scholar 

  19. Kohn J, Zeltinger J. Degradable, drug-eluting stents: a new frontier for the treatment of coronary artery disease. Expert Rev Med Devices. 2005;2(6):667–71.

    Article  CAS  PubMed  Google Scholar 

  20. Waksman R, Pakala R. Biodegradable and bioabsorbable stents. Curr Pharm Des. 2010;16(36):4041–51.

    Article  CAS  PubMed  Google Scholar 

  21. Foin N, Lee RD, Torii R, et al. Impact of stent strut design in metallic stents and biodegradable scaffolds. Int J Cardiol. 2014;177(3):800–8.

    Article  PubMed  Google Scholar 

  22. Bartkowiak-Jowsa M, Będziński R, Kozłowska A, et al. Mechanical, rheological, fatigue, and degradation behavior of PLLA, PGLA and PDGLA as materials for vascular implants. Meccanica. 2013;48(3):721–31.

    Article  Google Scholar 

  23. Mattesini A, Pighi M, Konstantinidis N, et al. Optical coherence tomography in bioabsorbable stents: mechanism of vascular response and guidance of stent implantation. Minerva Cardioangiol. 2014;62(1):71–82.

    PubMed  CAS  Google Scholar 

  24. Poncin P, Millet C, Chevy J, et al. Comparing and optimizing Co–Cr tubing for stent applications. In: Proceeding materials and processes for medical devices conference, 25–27 August. St Paul: ASM International; 2004. p. 279–83.

    Google Scholar 

  25. Berglund J, Guo Y, Wilcox JN. Challenges related to development of bioabsorbable vascular stents. Euro Interven. 2009;5(Suppl F):F72–9.

    Google Scholar 

  26. Garcia-Garcia HM, Serruys PW, Campos CM, et al. Assessing bioresorbable coronary devices: methods and parameters. JACC Cardiovasc Imaging. 2014;7(11):1130–48.

    Article  PubMed  Google Scholar 

  27. AL-Mangour Bandar RM, Yue S. Coronary stents fracture: an engineering approach (review). Mater Sci Appl. 2013;4:606–21.

    Google Scholar 

  28. Foin N, Torii R, Mattesini A, et al. Biodegradable vascular scaffold: is optimal expansion the key to minimising flow disturbances and risk of adverse events? EuroIntervention. 2015 Feb;10(10):1139–42.

    Article  PubMed  Google Scholar 

  29. Ormiston JA, De Vroey F, Serruys PW, et al. Bioresorbable polymeric vascular scaffolds: a cautionary tale. Circ Cardiovasc Interv. 2011;4(5):535–8.

    Article  PubMed  Google Scholar 

  30. Stone GW, Abizaid A, Onuma Y, Seth A, Gao R, Ormiston J, Kimura T, Chevalier B, Ben-Yehuda O, Dressler O, McAndrew T, Ellis SG, Kereiakes DJ, Serruys PW. Effect of Technique on Outcomes Following Bioresorbable Vascular Scaffold Implantation: Analysis From the ABSORB Trials. J Am Coll Cardiol. 2017;70(23):2863–74. https://www.ncbi.nlm.nih.gov/pubmed/29100704.

  31. Mochizuki M, Hirami M. Structural effects on the biodegradation of aliphatic polyesters. Polym Adv Technol. 1997;8(4):203–9.

    Article  CAS  Google Scholar 

  32. Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymer. 2011;3(3):1377–97.

    Article  CAS  Google Scholar 

  33. Vroman I, Tighzert L. Biodegradable polymers. Materials. 2009;2(2):307–44.

    Article  CAS  PubMed Central  Google Scholar 

  34. Meijer HEH, Govaert LE. Mechanical performance of polymer systems: the relation between structure and properties. Prog Polym Sci. 2005;30(8–9):915–38.

    Article  CAS  Google Scholar 

  35. Nielson LE. Mechanical properties of polymers and composites. New York: Marcel Dekker Inc.; 1974.

    Google Scholar 

  36. Nunes RW, Martin JR, Johnson JF. Influence of molecular weight and molecular weight distribution on mechanical properties of polymers. Polym Eng Sci. 1982;22(4):205–28.

    Article  CAS  Google Scholar 

  37. Seitz JT. The estimation of mechanical properties of polymers from molecular structure. J Appl Polym Sci. 1993;49(8):1331–51.

    Article  CAS  Google Scholar 

  38. Su W-F. Polymer size and polymer solutions. In: Principles of polymer design and synthesis. Lecture motes in chemistry. 82. Berlin Heidelberg: Springer; 2013. p. 9–26.

    Chapter  Google Scholar 

  39. Liu G, Zhang X, Wang D. Tailoring crystallization: towards high-performance poly(lactic acid). Adv Mater. 2014;26(40):6905–11.

    Article  CAS  PubMed  Google Scholar 

  40. Sarasua JR, Arraiza AL, Balerdi P, et al. Crystallinity and mechanical properties of optically pure polylactides and their blends. Polym Eng Sci. 2005;45(5):745–53.

    Article  CAS  Google Scholar 

  41. Cocca M, Lorenzo MLD, Malinconico M, et al. Influence of crystal polymorphism on mechanical and barrier properties of poly (l-lactic acid). Eur Polym J. 2011;47(5):1073–80.

    Article  CAS  Google Scholar 

  42. Perego G, Cella GD, Bastioli C. Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym Sci. 1996;59(1):37–43.

    Article  CAS  Google Scholar 

  43. Lim JY, Kim SH, Lim S, et al. Improvement of flexural strengths of poly (L-lactic acid) by solid-state extrusion, 2. Extrusion through rectangular die. Macromol Mater Eng. 2003;288(1):50–7.

    Article  CAS  Google Scholar 

  44. Brandau O. Material basics. In: Brandau O, editor. Stretch blow molding. 2nd ed. Oxford: William Andrew Publishing; 2012. p. 5–25.

    Chapter  Google Scholar 

  45. Bower DI, Bower DI. Oriented polymers I – production and characterisation An Introduction to Polymer Physics. Cambridge: Cambridge University Press; 2002.

    Google Scholar 

  46. Garcia-Jejon A. Advances in blow moulding process optimization. Rapra Review Report 82. Shawbury: Rapra Technology; 1995.

    Google Scholar 

  47. Kukureka SN, Craggs G, Ward IM. Analysis and modelling of the die drawing of polymers. J Mater Sci. 1992;27(12):3379–88.

    Article  CAS  Google Scholar 

  48. Fischer EW. Effect of annealing and temperature on the morphological structure of polymers. Pure and Applied Chemistry1972. p. 113.

    Google Scholar 

  49. Hobbs SY, Pratt CF. The effect of skin-core morphology on the impact fracture of poly(butyline terephthalate). J Appl Polym Sci. 1975;19(6):1701–22.

    Article  CAS  Google Scholar 

  50. Neamtu I, Chiriac AP, Diaconu A, et al. Current concepts on cardiovascular stent devices. Mini-Rev Med Chem. 2014;14(6):505–36.

    Article  CAS  PubMed  Google Scholar 

  51. Kwon DY, Kim JI, Kim DY, et al. Biodegradable stent. J Biomed Sci Eng. 2012;5(4):9.

    Article  CAS  Google Scholar 

  52. Zhang Y, Bourantas CV, Farooq V, et al. Bioresorbable scaffolds in the treatment of coronary artery disease. Med Devices (Auckl). 2013;6:37–48.

    Google Scholar 

  53. Oberhauser J, Hossainy S, Rapoza R. Design principles and performance of bioresorbable polymeric vascular scaffolds. Euro Intervention. 2009;5(F):F15–22.

    PubMed  Google Scholar 

  54. Gajjar RC, King WM. Degradation Process. Resorbable Fiber-Forming Polymers for Biotextile Applications: Springer Briefs in Materials. Berlin, New York, Heidelberg: Springer International Publishing; 2014. p. 7–10.

    Google Scholar 

  55. Onuma Y, Serruys PW. Bioresorbable scaffold: The advent of a New Era in percutaneous coronary and peripheral revascularization? Circulation. 2011;123(7):779–97.

    Article  PubMed  Google Scholar 

  56. Ormiston JA, Serruys PW, Regar E, et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet. 2008;371(9616):899–907.

    Article  CAS  PubMed  Google Scholar 

  57. Ormiston JA, Webber B, Ben Ubod B, et al. An independent bench comparison of two bioresorbable drug-eluting coronary scaffolds (Absorb and DESolve) with a durable metallic drug-eluting stent (ML8/Xpedition). Euro Inter. 2015;11(1):60–7. published

    Google Scholar 

  58. Sotomi Y, Ishibashi Y, Suwannasom P, et al. Acute gain in minimal lumen area following implantation of everolimus-eluting ABSORB biodegradable vascular scaffolds or xience metallic stentsIntravascular ultrasound assessment from the ABSORB II trial. JACC Cardiovasc Interven. 2016;9(12):1216–27.

    Article  Google Scholar 

  59. Foin N, Lee R, Bourantas CV, et al. Bioabsorbable vascular scaffold radial expansion and conformation compared to a metallic platform: insights from in-vitro expansion in a coronary artery lesion model. Euro Interven. 2016;12(7):834–44.

    Google Scholar 

  60. Rizik DG, Hermiller JB, Kereiakes DJ. The ABSORB bioresorbable vascular scaffold: a novel, fully resorbable drug-eluting stent: current concepts and overview of clinical evidence. Catheter Cardiovasc Interv. 2015;86(4):664–77.

    Article  PubMed  Google Scholar 

  61. Ellis SG, Kereiakes DJ, Metzger DC, et al. Everolimus-eluting bioresorbable scaffolds for coronary artery disease. New Engl J Med. 2015;373(20):1905–15.

    Article  CAS  PubMed  Google Scholar 

  62. Gao R, Yang Y, Han Y, et al. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery diseaseABSORB China trial. J Am Coll Cardiol. 2015;66(21):2298–309.

    Article  CAS  PubMed  Google Scholar 

  63. Kimura T, Kozuma K, Tanabe K, et al. A randomized trial evaluating everolimus-eluting Absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur Heart J. 2015;36(47):3332–42.

    Article  CAS  PubMed  Google Scholar 

  64. Serruys PW, Chevalier B, Dudek D, et al. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet. 2015;3(385(9962)):43–54.

    Article  CAS  Google Scholar 

  65. Suwannasom P, Sotomi Y, Ishibashi Y, et al. The impact of post-procedural asymmetry, expansion, and eccentricity of bioresorbable everolimus-eluting scaffold and metallic everolimus-eluting stent on clinical outcomes in the ABSORB II trial. JACC Cardiovasc Interv. 2016;9(12):1231–42.

    Article  PubMed  Google Scholar 

  66. Dalos D, Gangl C, Roth C, et al. Mechanical properties of the everolimus-eluting bioresorbable vascular scaffold compared to the metallic everolimus-eluting stent. BMC Cardiovasc Disord. 2016;16(1):1–7.

    Article  CAS  Google Scholar 

  67. Brugaletta S, Gomez-Lara J, Diletti R, et al. Comparison of in vivo eccentricity and symmetry indices between metallic stents and bioresorbable vascular scaffolds: insights from the ABSORB and SPIRIT trials. Catheter Cardiovasc Interv. 2012;79(2):219–28.

    Article  PubMed  Google Scholar 

  68. Panoulas VF, Miyazaki T, Sato K, et al. Procedural outcomes of patients with calcified lesions treated with bioresorbable vascular scaffolds. Euro Interven. 2016;11(12):1355–62.

    Google Scholar 

  69. Mattesini A, Secco GG, Dall’Ara G, et al. ABSORB biodegradable stents versus second-generation metal stents: a comparison study of 100 complex lesions treated under OCT guidance. JACC Cardiovasc Interv. 2014;7(7):741–50.

    PubMed  Google Scholar 

  70. Stone GW, Gao R, Kimura T, et al. 1-year outcomes with the Absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta-analysis. Lancet. 2016;387(10025):1277–89.

    Article  CAS  PubMed  Google Scholar 

  71. Cassese S, Byrne RA, Ndrepepa G, et al. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet. 2016;387(10018):537–44.

    Article  CAS  PubMed  Google Scholar 

  72. Capodanno D, Gori T, Nef H, et al. Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. Euro Interven. 2015;10(10):1144–53.

    Google Scholar 

  73. Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet. 2016;388(10059):2479–91.

    Article  CAS  PubMed  Google Scholar 

  74. Chevalier B, Cequier A, Dudek D, et al. Four-year follow-up of the randomised comparison between an everolimus-eluting bioresorbable scaffold and an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II trial). Euro Interven. 2017;13(13):1561–64.

    Article  PubMed  Google Scholar 

  75. Ellis GWS SG. Everolimus-eluting bioresorbable vascular scaffolds in patients with coronary artery disease: ABSORB III trial 2-year results. Florida: ACC; 2017.

    Google Scholar 

  76. Kereiakes DJ, Ellis SG, Metzger C, et al. 3-year clinical outcomes with everolimus-eluting bioresorbable coronary scaffolds: the ABSORB III trial. J Am Coll Cardiol. 2017;70(23):2852–62.

    Google Scholar 

  77. Puricel S, Cuculi F, Weissner M, et al. Bioresorbable coronary scaffold thrombosis: multicenter comprehensive analysis of clinical presentation, mechanisms, and predictors. J Am Coll Cardiol. 2016;67(8):921–31.

    Article  PubMed  Google Scholar 

  78. Serruys PW, Ormiston J, van Geuns R-J, et al. A polylactide bioresorbable scaffold eluting everolimus for treatment of coronary stenosis 5-year follow-up. J Am Coll Cardiol. 2016;67(7):766–76.

    Article  CAS  PubMed  Google Scholar 

  79. Campos CM, Muramatsu T, Iqbal J, et al. Bioresorbable drug-eluting magnesium-alloy scaffold for treatment of coronary artery disease. Int J Mol Sci. 2013;14(12):24492–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Alexy RD, Levi DS. Materials and manufacturing technologies available for production of a pediatric bioabsorbable stent. Biomed Res Int. 2013;2013:11.

    Article  CAS  Google Scholar 

  81. Huang Y, Ng HC, Ng XW, et al. Drug-eluting biostable and erodible stents. J Control Release. 2014;193:188–201.

    Article  CAS  PubMed  Google Scholar 

  82. Serruys PW, Onuma Y, García-García HM, et al. Dynamics of vessel wall changes following the implantation of the Absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months. Euro Interven. 2014;9(11):1271–84.

    Google Scholar 

  83. Haude M, Ince H, Abizaid A, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial. Lancet. 2016;387(10013):31–9.

    Article  CAS  PubMed  Google Scholar 

  84. Fedel M, Tessarolo F, Ferrari P, et al. Functional properties and performance of new and reprocessed coronary angioplasty balloon catheters. JJ Biomed Mater Res Part B Appl Biomater. 2006;78B(2):364–72.

    Article  CAS  Google Scholar 

  85. Mullins CE. Balloon dilation procedures – general. In: Cardiac Catheterization in Congenital Heart Disease: Pediatric and Adult. Oxford: Blackwell Publishing; 2007. p. 410–29.

    Google Scholar 

  86. Mortier P, De Beule M, Carlier SG, et al. Numerical study of the uniformity of balloon-expandable stent deployment. J Biomech Eng. 2008;130(2):021018.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ying Ang PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ang, H.Y. et al. (2018). Bioresorbable Scaffold Stability and Mechanical Properties. In: Lanzer, P. (eds) Textbook of Catheter-Based Cardiovascular Interventions. Springer, Cham. https://doi.org/10.1007/978-3-319-55994-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55994-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55993-3

  • Online ISBN: 978-3-319-55994-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics