Skip to main content

Abstract

Intravascular ultrasound (IVUS) has evolved as the first clinical imaging modality to directly visualize vessel wall pathology. Because the ultrasound signal is able to penetrate the vessel wall, the entire cross-section can be interrogated in real time; biological processes such as plaque burden, plaque composition, vessel remodeling, and restenosis can be assessed. In addition, IVUS provides optimal guidance for interventional procedures. Along with the progress in interventional technology and increasing complexity of interventional sites in aging populations, IVUS continues to play a vital role in improving outcomes. Current technology in invasive imaging has two main aims: further improvement of spatial and tissue resolution, and physiologic assessment of the target sites. Achievement of these aims helps to optimize the quality and outcomes of catheter-based cardiovascular interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sones FM Jr, SHIREY EK. Cine coronary arteriography. Mod Concepts Cardiovasc Dis. 1962;31:735–8.

    PubMed  Google Scholar 

  2. Bom N, Lancée CT, van Egmond FC. An ultrasonic intracardiac scanner. Ultrasonics. 1972;10:72–6.

    Article  PubMed  CAS  Google Scholar 

  3. Yock P, Linker D, Saether O, Thapliyal H, Arenson J, White N, Ports T, Angelsen B. Intravascular two-dimensional catheter ultrasound: initial clinical studies. Circulation. 1988;78:II–21.

    Google Scholar 

  4. Fitzgerald PJ, St Goar FG, Connolly AJ, et al. Intravascular ultrasound imaging of coronary arteries. Is three layers the norm? Circulation. 1992;86:154–8.

    Article  PubMed  CAS  Google Scholar 

  5. Mintz GS, Nissen SE, Anderson WD, et al. American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37:1478–92.

    Article  PubMed  CAS  Google Scholar 

  6. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.

    Article  PubMed  CAS  Google Scholar 

  7. Schoenhagen P, Ziada KM, Kapadia SR, Crowe TD, Nissen SE, Tuzcu EM. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation. 2000;101:598–603.

    Article  PubMed  CAS  Google Scholar 

  8. Honda Y, Fitzgerald PJ. Frontiers in intravascular imaging technologies. Circulation. 2008;117:2024–37.

    Article  PubMed  Google Scholar 

  9. Gardner CM, Tan H, Hull EL, et al. Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC Cardiovasc Imaging. 2008;1:638–48.

    Article  PubMed  Google Scholar 

  10. Waxman S, Dixon SR, L'Allier P, et al. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc Imaging. 2009;2:858–68.

    Article  PubMed  Google Scholar 

  11. Siegel RJ, Ariani M, Fishbein MC, et al. Histopathologic validation of angioscopy and intravascular ultrasound. Circulation. 1991;84:109–17.

    Article  PubMed  CAS  Google Scholar 

  12. Maehara A, Mintz GS, Ahmed JM, et al. An intravascular ultrasound classification of angiographic coronary artery aneurysms. Am J Cardiol. 2001;88:365–70.

    Article  PubMed  CAS  Google Scholar 

  13. Kearney P, Erbel R, Rupprecht HJ, et al. Differences in the morphology of unstable and stable coronary lesions and their impact on the mechanisms of angioplasty. An in vivo study with intravascular ultrasound. Eur Heart J. 1996;17:721–30.

    Article  PubMed  CAS  Google Scholar 

  14. Lee SY, Mintz GS, Kim S-Y, et al. Attenuated plaque detected by intravascular ultrasound: clinical, angiographic, and morphologic features and post-percutaneous coronary intervention complications in patients with acute coronary syndromes. JACC Cardiovasc Interv. 2009;2:65–72.

    Article  PubMed  Google Scholar 

  15. Rioufol G, Finet G, Ginon I, et al. Multiple atherosclerotic plaque rupture in acute coronary syndrome: a three-vessel intravascular ultrasound study. Circulation. 2002;106:804–8.

    Article  PubMed  CAS  Google Scholar 

  16. Fujii K, Kobayashi Y, Mintz GS, et al. Intravascular ultrasound assessment of ulcerated ruptured plaques: a comparison of culprit and nonculprit lesions of patients with acute coronary syndromes and lesions in patients without acute coronary syndromes. Circulation. 2003;108:2473–8.

    Article  PubMed  Google Scholar 

  17. Yamada R, Okura H, Kume T, et al. Relationship between arterial and fibrous cap remodeling: a serial three-vessel intravascular ultrasound and optical coherence tomography study. Circ Cardiovasc Interv. 2010;3:484–90.

    Article  PubMed  Google Scholar 

  18. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35.

    Article  PubMed  CAS  Google Scholar 

  19. Calvert PA, Obaid DR, O'Sullivan M, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) study. JACC Cardiovasc Imaging. 2011;4:894–901.

    Article  PubMed  Google Scholar 

  20. Madder RD, Smith JL, Dixon SR, Goldstein JA. Composition of target lesions by near-infrared spectroscopy in patients with acute coronary syndrome versus stable angina. Circ Cardiovasc Interv. 2012;5:55–61.

    Article  PubMed  Google Scholar 

  21. Madder RD, Goldstein JA, Madden SP, et al. Detection by near-infrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST-segment elevation myocardial infarction. JACC Cardiovasc Interv. 2013;6:838–46.

    Article  PubMed  Google Scholar 

  22. Choi B-J, Prasad A, Gulati R, et al. Coronary endothelial dysfunction in patients with early coronary artery disease is associated with the increase in intravascular lipid core plaque. Eur Heart J. 2013;34:2047–54.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Roleder T, Kovacic JC, Ali Z, et al. Combined NIRS and IVUS imaging detects vulnerable plaque using a single catheter system: a head-to-head comparison with OCT. EuroIntervention. 2014;10:303–11.

    Article  PubMed  Google Scholar 

  24. Kang S-J, Mintz GS, Pu J, et al. Combined IVUS and NIRS detection of fibroatheromas: histopathological validation in human coronary arteries. JACC Cardiovasc Imaging. 2015;8:184–94.

    Article  PubMed  Google Scholar 

  25. Birgelen von C, Hartmann M, Mintz GS, et al. Relationship between cardiovascular risk as predicted by established risk scores versus plaque progression as measured by serial intravascular ultrasound in left main coronary arteries. Circulation. 2004;110:1579–85.

    Article  Google Scholar 

  26. Nissen SE, Tardif JC, Nicholls SJ. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. 2007;356:1304–16.

    Article  PubMed  CAS  Google Scholar 

  27. Kawasaki M, Sano K, Okubo M, et al. Volumetric quantitative analysis of tissue characteristics of coronary plaques after statin therapy using three-dimensional integrated backscatter intravascular ultrasound. J Am Coll Cardiol. 2005;45:1946–53.

    Article  PubMed  CAS  Google Scholar 

  28. Kini AS, Baber U, Kovacic JC, et al. Changes in plaque lipid content after short-term intensive versus standard statin therapy: the YELLOW trial (Reduction in Yellow Plaque by Aggressive Lipid-Lowering Therapy). J Am Coll Cardiol. 2013;62:21–9.

    Article  PubMed  CAS  Google Scholar 

  29. Stone GW, Hodgson JM, St Goar FG, et al. Improved procedural results of coronary angioplasty with intravascular ultrasound-guided balloon sizing: the CLOUT pilot trial. Clinical Outcomes With Ultrasound Trial (CLOUT) Investigators. Circulation. 1997;95:2044–52.

    Article  PubMed  CAS  Google Scholar 

  30. Schiele F, Meneveau N, Gilard M, et al. Intravascular ultrasound-guided balloon angioplasty compared with stent: immediate and 6-month results of the multicenter, randomized Balloon Equivalent to Stent Study (BEST). Circulation. 2003;107:545–51.

    Article  PubMed  Google Scholar 

  31. Chieffo A, Latib A, Caussin C, et al. A prospective, randomized trial of intravascular-ultrasound guided compared to angiography guided stent implantation in complex coronary lesions: the AVIO trial. Am Heart J. 2013;165:65–72.

    Article  PubMed  Google Scholar 

  32. Costa MA, Angiolillo DJ, Tannenbaum M, et al. Impact of stent deployment procedural factors on long-term effectiveness and safety of sirolimus-eluting stents (final results of the multicenter prospective STLLR trial). Am J Cardiol. 2008;101:1704–11.

    Article  CAS  PubMed  Google Scholar 

  33. Moreno R, Fernández C, Hernandez R, et al. Drug-eluting stent thrombosis: results from a pooled analysis including 10 randomized studies. J Am Coll Cardiol. 2005;45:954–9.

    Article  PubMed  CAS  Google Scholar 

  34. Hong M-K, Mintz GS, Lee CW, et al. Intravascular ultrasound predictors of angiographic restenosis after sirolimus-eluting stent implantation. Eur Heart J. 2006;27:1305–10.

    Article  PubMed  Google Scholar 

  35. Morino Y, Tamiya S, Masuda N, et al. Intravascular ultrasound criteria for determination of optimal longitudinal positioning of sirolimus-eluting stents. Circ J. 2010;74:1609–16.

    Article  PubMed  Google Scholar 

  36. Kasaoka S, Tobis JM, Akiyama T, et al. Angiographic and intravascular ultrasound predictors of in-stent restenosis. J Am Coll Cardiol. 1998;32:1630–5.

    Article  PubMed  CAS  Google Scholar 

  37. Cheneau E, Leborgne L, Mintz GS, et al. Predictors of subacute stent thrombosis: results of a systematic intravascular ultrasound study. Circulation. 2003;108:43–7.

    Article  PubMed  Google Scholar 

  38. Uren N. Predictors and outcomes of stent thrombosis. An intravascular ultrasound registry. Eur Heart J. 2002;23:124–32.

    Article  PubMed  Google Scholar 

  39. Fujii K, Carlier SG, Mintz GS, et al. Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: an intravascular ultrasound study. J Am Coll Cardiol. 2005;45:995–8.

    Article  PubMed  CAS  Google Scholar 

  40. Okabe T, Mintz GS, Buch AN, et al. Intravascular ultrasound parameters associated with stent thrombosis after drug-eluting stent deployment. Am J Cardiol. 2007;100:615–20.

    Article  PubMed  CAS  Google Scholar 

  41. Sonoda S, Morino Y, Ako J, et al. Impact of final stent dimensions on long-term results following sirolimus-eluting stent implantation: serial intravascular ultrasound analysis from the SIRIUS trial. J Am Coll Cardiol. 2004;43:1959–63.

    Article  PubMed  Google Scholar 

  42. Morino Y, Honda Y, Okura H, et al. An optimal diagnostic threshold for minimal stent area to predict target lesion revascularization following stent implantation in native coronary lesions. Am J Cardiol. 2001;88:301–3.

    Article  PubMed  CAS  Google Scholar 

  43. Doi H, Maehara A, Mintz GS, et al. Impact of post-intervention minimal stent area on 9-month follow-up patency of paclitaxel-eluting stents: an integrated intravascular ultrasound analysis from the TAXUS IV, V, and VI and TAXUS ATLAS Workhorse, Long Lesion, and Direct Stent Trials. JACC Cardiovasc Interv. 2009;2:1269–75.

    Article  PubMed  Google Scholar 

  44. Song HG, Kang S-J, Ahn J-M, et al. Intravascular ultrasound assessment of optimal stent area to prevent in-stent restenosis after zotarolimus-, everolimus-, and sirolimus-eluting stent implantation. Catheter Cardiovasc Interv. 2014;83:873–8.

    Article  PubMed  Google Scholar 

  45. Sheris SJ, Canos MR, Weissman NJ. Natural history of intravascular ultrasound-detected edge dissections from coronary stent deployment. Am Heart J. 2000;139:59–63.

    Article  PubMed  CAS  Google Scholar 

  46. Nishida T, Colombo A, Briguori C, et al. Outcome of nonobstructive residual dissections detected by intravascular ultrasound following percutaneous coronary intervention. Am J Cardiol. 2002;89:1257–62.

    Article  PubMed  Google Scholar 

  47. Castagna MT, Mintz GS, Leiboff BO, et al. The contribution of “mechanical” problems to in-stent restenosis: an intravascular ultrasonographic analysis of 1090 consecutive in-stent restenosis lesions. Am Heart J. 2001;142:970–4.

    Article  PubMed  CAS  Google Scholar 

  48. Kang S-J, Mintz GS, Park D-W, et al. Mechanisms of in-stent restenosis after drug-eluting stent implantation: intravascular ultrasound analysis. Circ Cardiovasc Interv. 2011;4:9–14.

    Article  PubMed  Google Scholar 

  49. Sakurai R, Ako J, Hassan AHM, et al. Neointimal progression and luminal narrowing in sirolimus-eluting stent treatment for bare metal in-stent restenosis: a quantitative intravascular ultrasound analysis. Am Heart J. 2007;154:361–5.

    Article  PubMed  CAS  Google Scholar 

  50. Doi H, Maehara A, Mintz GS, et al. Impact of in-stent minimal lumen area at 9 months poststent implantation on 3-year target lesion revascularization-free survival: a serial intravascular ultrasound analysis from the TAXUS IV, V, and VI trials. Circ Cardiovasc Interv. 2008;1:111–8.

    Article  PubMed  Google Scholar 

  51. Hassan AKM, Bergheanu SC, Stijnen T, et al. Late stent malapposition risk is higher after drug-eluting stent compared with bare-metal stent implantation and associates with late stent thrombosis. Eur Heart J. 2010;31:1172–80.

    Article  PubMed  CAS  Google Scholar 

  52. Ako J, Morino Y, Honda Y, et al. Late incomplete stent apposition after sirolimus-eluting stent implantation: a serial intravascular ultrasound analysis. J Am Coll Cardiol. 2005;46:1002–5.

    Article  PubMed  CAS  Google Scholar 

  53. Honda Y. Drug-eluting stents. Insights from invasive imaging technologies. Circ J. 2009;73:1371–80.

    Article  PubMed  CAS  Google Scholar 

  54. Doi H, Maehara A, Mintz GS, et al. Classification and potential mechanisms of intravascular ultrasound patterns of stent fracture. Am J Cardiol. 2009;103:818–23.

    Article  PubMed  Google Scholar 

  55. Park S-J, Kim Y-H, Park D-W, et al. Impact of intravascular ultrasound guidance on long-term mortality in stenting for unprotected left main coronary artery stenosis. Circ Cardiovasc Interv. 2009;2:167–77.

    Article  PubMed  Google Scholar 

  56. Kim J-S, Hong M-K, Ko Y-G, et al. Impact of intravascular ultrasound guidance on long-term clinical outcomes in patients treated with drug-eluting stent for bifurcation lesions: data from a Korean multicenter bifurcation registry. Am Heart J. 2011;161:180–7.

    Article  PubMed  CAS  Google Scholar 

  57. Kim J-S, Kang T-S, Mintz GS, et al. Randomized comparison of clinical outcomes between intravascular ultrasound and angiography-guided drug-eluting stent implantation for long coronary artery stenoses. JACC Cardiovasc Interv. 2013;6:369–76.

    Article  PubMed  Google Scholar 

  58. Hong S-J, Kim B-K, Shin D-H, et al. Effect of intravascular ultrasound-guided vs angiography-guided everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial. JAMA. 2015;314:1–9.

    Article  CAS  Google Scholar 

  59. Witzenbichler B, Maehara A, Weisz G, et al. Relationship between intravascular ultrasound guidance and clinical outcomes after drug-eluting stents: the Assessment of Dual Antiplatelet Therapy with Drug-Eluting Stents (ADAPT-DES) study. Circulation. 2014;129:463–70.

    Article  PubMed  CAS  Google Scholar 

  60. Casella G, Klauss V, Ottani F, Siebert U, Sangiorgio P, Bracchetti D. Impact of intravascular ultrasound-guided stenting on long-term clinical outcome: a meta-analysis of available studies comparing intravascular ultrasound-guided and angiographically guided stenting. Catheter Cardiovasc Interv. 2003;59:314–21.

    Article  PubMed  Google Scholar 

  61. Parise H, Maehara A, Stone GW, Leon MB, Mintz GS. Meta-analysis of randomized studies comparing intravascular ultrasound versus angiographic guidance of percutaneous coronary intervention in pre-drug-eluting stent era. Am J Cardiol. 2011;107:374–82.

    Article  PubMed  Google Scholar 

  62. Jang J-S, Song Y-J, Kang W, et al. Intravascular ultrasound-guided implantation of drug-eluting stents to improve outcome: a meta-analysis. JACC Cardiovasc Interv. 2014;7:233–43.

    Article  PubMed  Google Scholar 

  63. Alsidawi S, Effat M, Rahman S, Abdallah M, Leesar M. The role of vascular imaging in guiding routine percutaneous coronary interventions: a meta-analysis of bare metal stent and drug-eluting stent trials. Cardiovasc Ther. 2015;33:360–6.

    Article  PubMed  Google Scholar 

  64. Zhang Y, Farooq V, Garcia-Garcia HM, et al. Comparison of intravascular ultrasound versus angiography-guided drug-eluting stent implantation: a meta-analysis of one randomised trial and ten observational studies involving 19,619 patients. EuroIntervention. 2012;8:855–65.

    Article  PubMed  Google Scholar 

  65. Tonino PAL, De Bruyne B, Pijls NHJ, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    Article  PubMed  CAS  Google Scholar 

  66. Abizaid AS, Mintz GS, Mehran R, et al. Long-term follow-up after percutaneous transluminal coronary angioplasty was not performed based on intravascular ultrasound findings: importance of lumen dimensions. Circulation. 1999;100:256–61.

    Article  PubMed  CAS  Google Scholar 

  67. Mintz GS. Clinical utility of intravascular imaging and physiology in coronary artery disease. J Am Coll Cardiol. 2014;64:207–22.

    Article  PubMed  Google Scholar 

  68. Hong YJ, Mintz GS, Kim S-W, et al. Impact of plaque composition on cardiac troponin elevation after percutaneous coronary intervention: an ultrasound analysis. JACC Cardiovasc Imaging. 2009;2:458–68.

    Article  PubMed  Google Scholar 

  69. Goldstein JA, Maini B, Dixon SR, et al. Detection of lipid-core plaques by intracoronary near-infrared spectroscopy identifies high risk of periprocedural myocardial infarction. Circ Cardiovasc Interv. 2011;4:429–37.

    Article  PubMed  Google Scholar 

  70. Hermiller JB, Tenaglia AN, Kisslo KB, et al. In vivo validation of compensatory enlargement of atherosclerotic coronary arteries. Am J Cardiol. 1993;71:665–8.

    Article  PubMed  CAS  Google Scholar 

  71. Gerber TC, Erbel R, Gorge G, Ge J, Rupprecht HJ, Meyer J. Extent of atherosclerosis and remodeling of the left main coronary artery determined by intravascular ultrasound. Am J Cardiol. 1994;73:666–71.

    Article  PubMed  CAS  Google Scholar 

  72. Sano K, Mintz GS, Carlier SG, et al. Assessing intermediate left main coronary lesions using intravascular ultrasound. Am Heart J. 2007;154:983–8.

    Article  PubMed  Google Scholar 

  73. Oviedo C, Maehara A, Mintz GS, et al. Intravascular ultrasound classification of plaque distribution in left main coronary artery bifurcations: where is the plaque really located? Circ Cardiovasc Interv. 2010;3:105–12.

    Article  PubMed  Google Scholar 

  74. Jasti V, Ivan E, Yalamanchili V, Wongpraparut N, Leesar MA. Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation. 2004;110:2831–6.

    Article  PubMed  Google Scholar 

  75. Kang S-J, Lee J-Y, Ahn J-M, et al. Intravascular ultrasound-derived predictors for fractional flow reserve in intermediate left main disease. JACC Cardiovasc Interv. 2011;4:1168–74.

    Article  PubMed  Google Scholar 

  76. de la Torre Hernandez JM, Hernández-Hernández F, Alfonso F, et al. Prospective application of pre-defined intravascular ultrasound criteria for assessment of intermediate left main coronary artery lesions results from the multicenter LITRO study. J Am Coll Cardiol. 2011;58:351–8.

    Article  PubMed  Google Scholar 

  77. Fassa A-A, Wagatsuma K, Higano ST, et al. Intravascular ultrasound-guided treatment for angiographically indeterminate left main coronary artery disease: a long-term follow-up study. J Am Coll Cardiol. 2005;45:204–11.

    Article  PubMed  Google Scholar 

  78. Abizaid AS, Mintz GS, Abizaid A, et al. One-year follow-up after intravascular ultrasound assessment of moderate left main coronary artery disease in patients with ambiguous angiograms. J Am Coll Cardiol. 1999;34:707–15.

    Article  PubMed  CAS  Google Scholar 

  79. Okabe T, Mintz GS, Lee SY, et al. Five-year outcomes of moderate or ambiguous left main coronary artery disease and the intravascular ultrasound predictors of events. J Invasive Cardiol. 2008;20:635–9.

    PubMed  Google Scholar 

  80. Hahn J-Y, Song YB, Lee S-Y, et al. Serial intravascular ultrasound analysis of the main and side branches in bifurcation lesions treated with the T-stenting technique. J Am Coll Cardiol. 2009;54:110–7.

    Article  PubMed  Google Scholar 

  81. Song YB, Hahn J-Y, Choi S-H, et al. Sirolimus- versus paclitaxel-eluting stents for the treatment of coronary bifurcations results: from the COBIS (Coronary Bifurcation Stenting) registry. J Am Coll Cardiol. 2010;55:1743–50.

    Article  PubMed  Google Scholar 

  82. Kim B-K, Shin D-H, Hong M-K, et al. Clinical impact of intravascular ultrasound-guided chronic total occlusion intervention with zotarolimus-eluting versus biolimus-eluting stent implantation: randomized study. Circ Cardiovasc Interv. 2015;8:e002592.

    Article  PubMed  CAS  Google Scholar 

  83. Abizaid A, Ribamar Costa J, Bartorelli AL, et al. The ABSORB EXTEND study: preliminary report of the twelve-month clinical outcomes in the first 512 patients enrolled. EuroIntervention. 2015;10:1396–401.

    Article  PubMed  Google Scholar 

  84. Diletti R, Karanasos A, Muramatsu T, et al. Everolimus-eluting bioresorbable vascular scaffolds for treatment of patients presenting with ST-segment elevation myocardial infarction: BVS STEMI first study. Eur Heart J. 2014;35:777–86.

    Article  PubMed  CAS  Google Scholar 

  85. Diletti R, Onuma Y, Farooq V, et al. 6-month clinical outcomes following implantation of the bioresorbable everolimus-eluting vascular scaffold in vessels smaller or larger than 2.5 mm. J Am Coll Cardiol. 2011;58:258–64.

    Article  PubMed  Google Scholar 

  86. Capodanno D, Gori T, Nef H, et al. Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention. 2015;10:1144–53.

    Article  PubMed  Google Scholar 

  87. Puricel S, Cuculi F, Weissner M, et al. Bioresorbable coronary scaffold thrombosis: multicenter comprehensive analysis of clinical presentation, mechanisms, and predictors. J Am Coll Cardiol. 2016;67:921–31.

    Article  PubMed  Google Scholar 

  88. Cassese S, Byrne RA, Ndrepepa G, et al. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet. 2016;387:537–44.

    Article  PubMed  CAS  Google Scholar 

  89. Lipinski MJ, Escarcega RO, Baker NC, et al. Scaffold thrombosis after percutaneous coronary intervention with Absorb bioresorbable vascular scaffold: a systematic review and meta-analysis. JACC Cardiovasc Interv. 2016;9:12–24.

    Article  PubMed  Google Scholar 

  90. Suwannasom P, Sotomi Y, Ishibashi Y, et al. The impact of post-procedural asymmetry, expansion, and eccentricity of bioresorbable everolimus-eluting scaffold and metallic everolimus-eluting stent on clinical outcomes in the ABSORB II trial. JACC Cardiovasc Interv. 2016;9:1231–42.

    Article  PubMed  Google Scholar 

  91. Ishibashi Y, Muramatsu T, Nakatani S, et al. Incidence and potential mechanism(s) of post-procedural rise of cardiac biomarker in patients with coronary artery narrowing after implantation of an everolimus-eluting bioresorbable vascular scaffold or everolimus-eluting metallic stent. JACC Cardiovasc Interv. 2015;8:1053–63.

    Article  PubMed  Google Scholar 

  92. Ellis SG, Kereiakes DJ, Metzger DC, et al. Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N Engl J Med. 2015;373:1905–15.

    Article  PubMed  CAS  Google Scholar 

  93. Okada K, Kitahara H, Mitsutake Y, Kimura T, Miki K, Ikeno F, Yock P, Fitzgerald P, Honda Y. Assessment of bioresorbable scaffold struts with a novel high-definition 60 MHz IVUS imaging system: comparison with 40 MHz IVUS and optical coherence tomography. J Am Coll Cardiol. 2016;67(13_S):255–5.

    Google Scholar 

  94. Okada K, Kitahara H, Mitsutake Y, Tanaka S, Yock P, Fitzgerald PJ, Ikeno F, Honda Y. Assessment of bioresorbable scaffold with a novel high-definition 60 MHz IVUS imaging system: comparison with conventional 40 MHz IVUS and optical coherence tomography. J Am Coll Cardiol. 2015;66(15_S):146–147.

    Google Scholar 

  95. Yamada R, Tremmel JA, Tanaka S, et al. Functional versus anatomic assessment of myocardial bridging by intravascular ultrasound: impact of arterial compression on proximal atherosclerotic plaque. J Am Heart Assoc. 2016;5:e001735.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lee MS, Chen CH. Myocardial bridging: an up-to-date review. J Invasive Cardiol. 2015;27(11):521–8.

    PubMed  PubMed Central  Google Scholar 

  97. Tsujita K, Maehara A, Mintz GS, et al. Comparison of angiographic and intravascular ultrasonic detection of myocardial bridging of the left anterior descending coronary artery. Am J Cardiol. 2008;102:1608–13.

    Article  PubMed  Google Scholar 

  98. Yamada R, Turcott RG, Connolly AJ, et al. Histological characteristics of myocardial bridge with an ultrasonic echolucent band. Comparison between intravascular ultrasound and histology. Circ J. 2014;78:502–4.

    Article  PubMed  Google Scholar 

  99. Attaran S, Moscarelli M, Athanasiou T, Anderson J. Is coronary artery bypass grafting an acceptable alternative to myotomy for the treatment of myocardial bridging? Interact Cardiovasc Thorac Surg. 2013;16:347–9.

    Article  PubMed  Google Scholar 

  100. Kobashigawa JA, Tobis JM, Starling RC, et al. Multicenter intravascular ultrasound validation study among heart transplant recipients: outcomes after five years. J Am Coll Cardiol. 2005;45:1532–7.

    Article  PubMed  Google Scholar 

  101. Tuzcu EM, Kapadia SR, Sachar R, et al. Intravascular ultrasound evidence of angiographically silent progression in coronary atherosclerosis predicts long-term morbidity and mortality after cardiac transplantation. J Am Coll Cardiol. 2005;45:1538–42.

    Article  PubMed  Google Scholar 

  102. Okada K, Kitahara H, Yang H-M, et al. Paradoxical vessel remodeling of the proximal segment of the left anterior descending artery predicts long-term mortality after heart transplantation. JACC Heart Fail. 2015;3:942–52.

    Article  PubMed  Google Scholar 

  103. Okada K, Fearon WF, Luikart H, et al. Attenuated-signal plaque progression predicts long-term mortality after heart transplantation: IVUS assessment of cardiac allograft vasculopathy. J Am Coll Cardiol. 2016;68:382–92.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kitahara H, Okada K, Tanaka S, et al. Association of periarterial neovascularization with progression of cardiac allograft vasculopathy and long-term clinical outcomes in heart transplant recipients. J Heart Lung Transplant. 2016;35:752–9.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ramasubbu K, Schoenhagen P, Balghith MA, et al. Repeated intravascular ultrasound imaging in cardiac transplant recipients does not accelerate transplant coronary artery disease. J Am Coll Cardiol. 2003;41:1739–43.

    Article  PubMed  Google Scholar 

  106. Takahashi T, Honda Y, Russo RJ, Fitzgerald PJ. Intravascular ultrasound and quantitative coronary angiography. Catheter Cardiovasc Interv. 2002;55:118–28.

    Article  PubMed  Google Scholar 

  107. Albiero R, Rau T, Schluter M, et al. Comparison of immediate and intermediate-term results of intravascular ultrasound versus angiography-guided Palmaz-Schatz stent implantation in matched lesions. Circulation. 1997;96:2997–3005.

    Article  PubMed  CAS  Google Scholar 

  108. Blasini R, Neumann FJ, Schmitt C, Walter H, Schömig A. Restenosis rate after intravascular ultrasound-guided coronary stent implantation. Cathet Cardiovasc Diagn. 1998;44:380–6.

    Article  PubMed  CAS  Google Scholar 

  109. Choi JW, Goodreau LM, Davidson CJ. Resource utilization and clinical outcomes of coronary stenting: a comparison of intravascular ultrasound and angiographical guided stent implantation. Am Heart J. 2001;142:112–8.

    Article  PubMed  CAS  Google Scholar 

  110. Gaster AL, Slothuus Skjoldborg U, Larsen J, et al. Continued improvement of clinical outcome and cost effectiveness following intravascular ultrasound guided PCI: insights from a prospective, randomised study. Heart. 2003;89:1043–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Russo RJ, Silva PD, Teirstein PS, et al. A randomized controlled trial of angiography versus intravascular ultrasound-directed bare-metal coronary stent placement (the AVID Trial). Circ Cardiovasc Interv. 2009;2:113–23.

    Article  PubMed  Google Scholar 

  112. Sousa A, Abizaid A, Mintz GS, et al. CENIC. J Am Coll Cardiol. 2002;39:54A. (Abstr).

    Article  Google Scholar 

  113. Fitzgerald PJ, Oshima A, Hayase M, et al. Final results of the Can Routine Ultrasound Influence Stent Expansion (CRUISE) study. Circulation. 2000;102:523–30.

    Article  PubMed  CAS  Google Scholar 

  114. Gil RJ, Pawłowski T, Dudek D, et al. Comparison of angiographically guided direct stenting technique with direct stenting and optimal balloon angioplasty guided with intravascular ultrasound. The multicenter, randomized trial results. Am Heart J. 2007;154:669–75.

    Article  PubMed  Google Scholar 

  115. Mudra H, Di Mario C, de Jaegere P, et al. Randomized comparison of coronary stent implantation under ultrasound or angiographic guidance to reduce stent restenosis (OPTICUS study). Circulation. 2001;104:1343–9.

    Article  PubMed  CAS  Google Scholar 

  116. Orford JL, Denktas AE, Williams BA, et al. Routine intravascular ultrasound scanning guidance of coronary stenting is not associated with improved clinical outcomes. Am Heart J. 2004;148:501–6.

    Article  PubMed  Google Scholar 

  117. Schiele F, Meneveau N, Vuillemenot A, et al. Impact of intravascular ultrasound guidance in stent deployment on 6-month restenosis rate: a multicenter, randomized study comparing two strategies–with and without intravascular ultrasound guidance. RESIST study group. REStenosis after Ivus guided STenting. J Am Coll Cardiol. 1998;32:320–8.

    Google Scholar 

  118. Frey AW, Hodgson JM, Müller C, Bestehorn HP, Roskamm H. Ultrasound-guided strategy for provisional stenting with focal balloon combination catheter: results from the randomized Strategy for Intracoronary Ultrasound-guided PTCA and Stenting (SIPS) trial. Circulation. 2000;102:2497–502.

    Article  PubMed  CAS  Google Scholar 

  119. Oemrawsingh PV, Mintz GS, Schalij MJ, et al. Intravascular ultrasound guidance improves angiographic and clinical outcome of stent implantation for long coronary artery stenoses: final results of a randomized comparison with angiographic guidance (TULIP Study). Circulation. 2003;107:62–7.

    Article  PubMed  Google Scholar 

  120. Agostoni P, Valgimigli M, van Mieghem CAG, et al. Comparison of early outcome of percutaneous coronary intervention for unprotected left main coronary artery disease in the drug-eluting stent era with versus without intravascular ultrasonic guidance. Am J Cardiol. 2005;95:644–7.

    Article  PubMed  Google Scholar 

  121. Chen S-L, Ye F, Zhang J-J, et al. Intravascular ultrasound-guided systematic two-stent techniques for coronary bifurcation lesions and reduced late stent thrombosis. Catheter Cardiovasc Interv. 2013;81:456–63.

    Article  PubMed  Google Scholar 

  122. Costantini CO, Tarbine SG, Santos MF, et al. Am J Cardiol. 2008;102(suppl 1):161i.

    Google Scholar 

  123. Fujimoto H, Tao S, Dohi T, et al. Primary and mid-term outcome of sirolimus-eluting stent implantation with angiographic guidance alone. J Cardiol. 2008;51:18–24.

    Article  PubMed  Google Scholar 

  124. Hur SH, Kang S-J, Kim Y-H, et al. Impact of intravascular ultrasound-guided percutaneous coronary intervention on long-term clinical outcomes in a real world population. Catheter Cardiovasc Interv. 2013;81:407–16.

    Article  PubMed  Google Scholar 

  125. Jakabčin J, Špaček R, Bystroň M, et al. Long-term health outcome and mortality evaluation after invasive coronary treatment using drug eluting stents with or without the IVUS guidance. Randomized control trial. HOME DES IVUS. Catheter Cardiovasc Interv. 2010;75:578–83.

    Article  PubMed  Google Scholar 

  126. Kim S-H, Kim Y-H, Kang S-J, et al. Long-term outcomes of intravascular ultrasound-guided stenting in coronary bifurcation lesions. Am J Cardiol. 2010;106:612–8.

    Article  PubMed  Google Scholar 

  127. Roy P, Steinberg DH, Sushinsky SJ, et al. The potential clinical utility of intravascular ultrasound guidance in patients undergoing percutaneous coronary intervention with drug-eluting stents. Eur Heart J. 2008;29:1851–7.

    Article  PubMed  CAS  Google Scholar 

  128. Youn YJ, Yoon J, Lee J-W, et al. Intravascular ultrasound-guided primary percutaneous coronary intervention with drug-eluting stent implantation in patients with ST-segment elevation myocardial infarction. Clin Cardiol. 2011;34:706–13.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Park K-W, Kang S-H, Yang H-M, et al. Impact of intravascular ultrasound guidance in routine percutaneous coronary intervention for conventional lesions: data from the EXCELLENT trial. Int J Cardiol. 2013;167:721–6.

    Article  PubMed  Google Scholar 

  130. Ahn J-M, Han S, Park YK, et al. Differential prognostic effect of intravascular ultrasound use according to implanted stent length. Am J Cardiol. 2013;111:829–35.

    Article  PubMed  Google Scholar 

  131. Claessen BE, Mehran R, Mintz GS, et al. Impact of intravascular ultrasound imaging on early and late clinical outcomes following percutaneous coronary intervention with drug-eluting stents. JACC Cardiovasc Interv. 2011;4:974–81.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Heidi N. Bonneau, RN, MS, CCA, and M. Brooke Hollak, RN, BAHSA, for expert review and editing advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Honda MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okada, K., Fitzgerald, P.J., Honda, Y. (2018). Intravascular Ultrasound. In: Lanzer, P. (eds) Textbook of Catheter-Based Cardiovascular Interventions. Springer, Cham. https://doi.org/10.1007/978-3-319-55994-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55994-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55993-3

  • Online ISBN: 978-3-319-55994-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics