Skip to main content

IP3 Receptor Properties and Function at Membrane Contact Sites

  • Chapter
  • First Online:
Membrane Dynamics and Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 981))

Abstract

The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a ubiquitously expressed Ca2+-release channel localized in the endoplasmic reticulum (ER). The intracellular Ca2+ signals originating from the activation of the IP3R regulate multiple cellular processes including the control of cell death versus cell survival via their action on apoptosis and autophagy. The exact role of the IP3Rs in these two processes does not only depend on their activity, which is modulated by the cytosolic composition (Ca2+, ATP, redox status, …) and by various types of regulatory proteins, including kinases and phosphatases as well as by a number of oncogenes and tumor suppressors, but also on their intracellular localization, especially at the ER-mitochondrial and ER-lysosomal interfaces. At these interfaces, Ca2+ microdomains are formed, in which the Ca2+ concentration is finely regulated by the different ER, mitochondrial and lysosomal Ca2+-transport systems and also depends on the functional and structural interactions existing between them. In this review, we therefore discuss the most recent insights in the role of Ca2+ signaling in general, and of the IP3R in particular, in the control of basal mitochondrial bioenergetics, apoptosis, and autophagy at the level of inter-organellar contact sites.

Gemma Roest and Rita M. La Rovere are Joint first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALS:

Amyotrophic lateral sclerosis

AMPK:

AMP-activated kinase

ATG:

Autophagy-related

BIRD-2:

Bcl-2/IP3R disruptor-2 peptide

CICR:

Ca2+-induced Ca2+ release

CREB:

cAMP response element-binding protein

DT40 TKO:

DT40 IP3R triple knock-out

ER:

Endoplasmic reticulum

Fis1:

Fission 1 homologue

GRP75:

Glucose-regulated protein 75

GRP78/BiP:

Glucose-regulated protein 78

GSK3β:

Glycogen synthase kinase-3β

IMM:

Inner mitochondrial membrane

IBC:

IP3-binding core

IP3:

Inositol 1,4,5-trisphosphate

IP3R:

IP3 receptor

LC3:

Microtubule-associated protein light chain 3

LRRK2:

Leucine-rich repeat kinase 2

MAM:

Mitochondria-associated ER membrane

MCU:

Mitochondrial Ca2+ uniporter

Mfn:

Mitofusin

mPTP:

Mitochondrial permeabilization transition pore

mTORC1:

Mechanistic target of rapamycin complex 1

OMM:

Outer mitochondrial membrane

NAADP:

Nicotinic acid adenine dinucleotide phosphate

PACS-2:

Phosphofurin acidic cluster sorting protein 2

PERK:

Protein kinase RNA-like ER kinase

PIP3:

Phosphatidylinositol 3,4,5-trisphosphate

PKB/Akt:

Protein kinase B

PML:

Promyelocytic leukemia

PTEN:

Phosphatase and tensin homolog

PTPIP51:

Protein tyrosine phosphatase-interacting protein-51

ROS:

Reactive oxygen species

RyR:

Ryanodine receptor

SERCA:

Sarco-/endoplasmic reticulum Ca2+ ATPase

TCA:

Tricarboxylic acid

TFEB:

Transcription factor EB

TMX:

Thioredoxin-like transmembrane protein

TPC:

Two-pore channel

TRPML:

Transient receptor potential mucolipin

ULK1/2:

Atg1/Unc-51-like kinase 1/2

UPR:

Unfolded protein response

VAPB:

Vesicle-associated protein B

VDAC:

Voltage-dependent anion channel

References

  1. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21. https://doi.org/10.1038/35036035

    Article  CAS  PubMed  Google Scholar 

  2. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529. https://doi.org/10.1038/nrm1155

    Article  CAS  PubMed  Google Scholar 

  3. Vandecaetsbeek I, Vangheluwe P, Raeymaekers L et al (2011) The Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus. Cold Spring Harb Perspect Biol 3:a004184. https://doi.org/10.1101/cshperspect.a004184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Prins D, Michalak M (2011) Organellar calcium buffers. Cold Spring Harb Perspect Biol 3:a004069. https://doi.org/10.1101/cshperspect.a004069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lanner JT (2012) Ryanodine receptor physiology and its role in disease. Adv Exp Med Biol 740:217–234. https://doi.org/10.1007/978-94-007-2888-2_9

    Article  CAS  PubMed  Google Scholar 

  6. Vermassen E, Parys JB, Mauger J-P (2004) Subcellular distribution of the inositol 1,4,5-trisphosphate receptors: functional relevance and molecular determinants. Biol Cell 96:3–17. https://doi.org/10.1016/j.biolcel.2003.11.004

    Article  CAS  PubMed  Google Scholar 

  7. Fedorenko OA, Popugaeva E, Enomoto M et al (2014) Intracellular calcium channels: inositol-1,4,5-trisphosphate receptors. Eur J Pharmacol 739:39–48. https://doi.org/10.1016/j.ejphar.2013.10.074

    Article  CAS  PubMed  Google Scholar 

  8. Foskett JK, White C, Cheung K-H, Mak D-OD (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658. https://doi.org/10.1152/physrev.00035.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mikoshiba K (2015) Role of IP3 receptor signaling in cell functions and diseases. Adv Biol Regul 57:217–227. https://doi.org/10.1016/j.jbior.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  10. Parys JB, De Smedt H (2012) Inositol 1,4,5-trisphosphate and its receptors. Adv Exp Med Biol 740:255–279. https://doi.org/10.1007/978-94-007-2888-2_11

    Article  CAS  PubMed  Google Scholar 

  11. Taylor CW, Genazzani AA, Morris SA (1999) Expression of inositol trisphosphate receptors. Cell Calcium 26:237–251. https://doi.org/10.1054/ceca.1999.0090

    Article  CAS  PubMed  Google Scholar 

  12. Bittremieux M, Parys JB, Pinton P, Bultynck G (2016) ER functions of oncogenes and tumor suppressors: Modulators of intracellular Ca2+ signaling. Biochim Biophys Acta 1863:1364–1378. https://doi.org/10.1016/j.bbamcr.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  13. Bosanac I, Michikawa T, Mikoshiba K, Ikura M (2004) Structural insights into the regulatory mechanism of IP3 receptor. Biochim Biophys Acta 1742:89–102. https://doi.org/10.1016/j.bbamcr.2004.09.016

    Article  CAS  PubMed  Google Scholar 

  14. Uchida K, Miyauchi H, Furuichi T et al (2003) Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 278:16551–16560. https://doi.org/10.1074/jbc.M300646200

    Article  CAS  PubMed  Google Scholar 

  15. Bosanac I, Alattia J-R, Mal TK et al (2002) Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature 420:696–700. https://doi.org/10.1038/nature01268

    Article  CAS  PubMed  Google Scholar 

  16. Bosanac I, Yamazaki H, Matsu-Ura T et al (2005) Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. Mol Cell 17:193–203. https://doi.org/10.1016/j.molcel.2004.11.047

    Article  CAS  PubMed  Google Scholar 

  17. Lin C-C, Baek K, Lu Z (2011) Apo and InsP3-bound crystal structures of the ligand-binding domain of an InsP3 receptor. Nat Struct Mol Biol 18:1172–1174. https://doi.org/10.1038/nsmb.2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seo M-D, Velamakanni S, Ishiyama N et al (2012) Structural and functional conservation of key domains in InsP3 and ryanodine receptors. Nature 483:108–112. https://doi.org/10.1038/nature10751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hamada K, Miyatake H, Terauchi A, Mikoshiba K (2017) IP3-mediated gating mechanism of the IP3 receptor revealed by mutagenesis and X-ray crystallography. Proc Natl Acad Sci USA 114:4661–4666. https://doi.org/10.1073/pnas.1701420114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fan G, Baker ML, Wang Z et al (2015) Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature 527:336–341. https://doi.org/10.1038/nature15249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Serysheva II, Baker M, Fan G (2018) Structural insights into IP3R function. Adv Exp Med Biol 981

    Google Scholar 

  22. Alzayady KJ, Wang L, Chandrasekhar R et al (2016) Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca2+ release. Sci Signal 9:ra35. https://doi.org/10.1126/scisignal.aad6281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taylor CW, Konieczny V (2016) IP3 receptors: take four IP3 to open. Sci Signal 9:pe1. https://doi.org/10.1126/scisignal.aaf6029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takahashi M, Kagasaki T, Hosoya T, Takahashi S (1993) Adenophostins A and B: potent agonists of inositol-1,4,5-trisphosphate receptor produced by Penicillium brevicompactum. Taxonomy, fermentation, isolation, physico-chemical and biological properties. J Antibiot (Tokyo) 46:1643–1647

    Article  CAS  Google Scholar 

  25. Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754. https://doi.org/10.1038/351751a0

    Article  CAS  PubMed  Google Scholar 

  26. Finch EA, Turner TJ, Goldin SM (1991) Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252:443–446

    Article  CAS  PubMed  Google Scholar 

  27. Iino M (1990) Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol 95:1103–1122

    Article  CAS  PubMed  Google Scholar 

  28. Parys JB, Sernett SW, DeLisle S et al (1992) Isolation, characterization, and localization of the inositol 1,4,5-trisphosphate receptor protein in Xenopus laevis oocytes. J Biol Chem 267:18776–18782

    CAS  PubMed  Google Scholar 

  29. Bezprozvanny I, Ehrlich BE (1993) ATP modulates the function of inositol 1,4,5-trisphosphate-gated channels at two sites. Neuron 10:1175–1184

    Article  CAS  PubMed  Google Scholar 

  30. Bootman MD, Taylor CW, Berridge MJ (1992) The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor. J Biol Chem 267:25113–25119

    CAS  PubMed  Google Scholar 

  31. Parys JB, Missiaen L, De Smedt H et al (1993) Bell-shaped activation of inositol-1,4,5-trisphosphate-induced Ca2+ release by thimerosal in permeabilized A7r5 smooth-muscle cells. Pflugers Arch 424:516–522

    Article  CAS  PubMed  Google Scholar 

  32. Tovey SC, Dedos SG, Taylor EJA et al (2008) Selective coupling of type 6 adenylyl cyclase with type 2 IP3 receptors mediates direct sensitization of IP3 receptors by cAMP. J Cell Biol 183:297–311. https://doi.org/10.1083/jcb.200803172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tovey SC, Dedos SG, Rahman T et al (2010) Regulation of inositol 1,4,5-trisphosphate receptors by cAMP independent of cAMP-dependent protein kinase. J Biol Chem 285:12979–12989. https://doi.org/10.1074/jbc.M109.096016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Konieczny V, Tovey SC, Mataragka S et al (2017) Cyclic AMP recruits a discrete intracellular Ca2+ store by unmasking hypersensitive IP3 receptors. Cell Rep 18:711–722. https://doi.org/10.1016/j.celrep.2016.12.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Patterson RL, Boehning D, Snyder SH (2004) Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu Rev Biochem 73:437–465

    Article  CAS  PubMed  Google Scholar 

  36. Vervloessem T, Yule DI, Bultynck G, Parys JB (2015) The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca2+-release channel. Biochim Biophys Acta 1853:1992–2005. https://doi.org/10.1016/j.bbamcr.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  37. Iwai M, Michikawa T, Bosanac I et al (2007) Molecular basis of the isoform-specific ligand-binding affinity of inositol 1,4,5-trisphosphate receptors. J Biol Chem 282:12755–12764. https://doi.org/10.1074/jbc.M609833200

    Article  CAS  PubMed  Google Scholar 

  38. Miyakawa T, Maeda A, Yamazawa T et al (1999) Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J 18:1303–1308. https://doi.org/10.1093/emboj/18.5.1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Newton CL, Mignery GA, Südhof TC (1994) Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem 269:28613–28619

    CAS  PubMed  Google Scholar 

  40. Tu H, Wang Z, Nosyreva E et al (2005) Functional characterization of mammalian inositol 1,4,5-trisphosphate receptor isoforms. Biophys J 88:1046–1055. https://doi.org/10.1529/biophysj.104.049593

    Article  CAS  PubMed  Google Scholar 

  41. Vanlingen S, Sipma H, De Smet P et al (2000) Ca2+ and calmodulin differentially modulate myo-inositol 1,4, 5-trisphosphate (IP3)-binding to the recombinant ligand-binding domains of the various IP3 receptor isoforms. Biochem J 346:275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mak DO, McBride S, Foskett JK (2001) Regulation by Ca2+ and inositol 1,4,5-trisphosphate (InsP3) of single recombinant type 3 InsP3 receptor channels. Ca2+ activation uniquely distinguishes types 1 and 3 InsP3 receptors. J Gen Physiol 117:435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mak D-OD, McBride SMJ, Petrenko NB, Foskett JK (2003) Novel regulation of calcium inhibition of the inositol 1,4,5-trisphosphate receptor calcium-release channel. J Gen Physiol 122:569–581. https://doi.org/10.1085/jgp.200308808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tu H, Wang Z, Bezprozvanny I (2005) Modulation of mammalian inositol 1,4,5-trisphosphate receptor isoforms by calcium: a role of calcium sensor region. Biophys J 88:1056–1069. https://doi.org/10.1529/biophysj.104.049601

    Article  CAS  PubMed  Google Scholar 

  45. Betzenhauser MJ, Wagner LE, Iwai M et al (2008) ATP modulation of Ca2+ release by type-2 and type-3 inositol (1, 4, 5)-triphosphate receptors. Differing ATP sensitivities and molecular determinants of action. J Biol Chem 283:21579–21587. https://doi.org/10.1074/jbc.M801680200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Missiaen L, Parys JB, Sienaert I et al (1998) Functional properties of the type-3 InsP3 receptor in 16HBE14o- bronchial mucosal cells. J Biol Chem 273:8983–8986

    Article  CAS  PubMed  Google Scholar 

  47. Maes K, Missiaen L, De Smet P et al (2000) Differential modulation of inositol 1,4,5-trisphosphate receptor type 1 and type 3 by ATP. Cell Calcium 27:257–267. https://doi.org/10.1054/ceca.2000.0121

    Article  CAS  PubMed  Google Scholar 

  48. Alzayady KJ, Wagner LE, Chandrasekhar R et al (2013) Functional inositol 1,4,5-trisphosphate receptors assembled from concatenated homo- and heteromeric subunits. J Biol Chem 288:29772–29784. https://doi.org/10.1074/jbc.M113.502203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bultynck G, Szlufcik K, Kasri NN et al (2004) Thimerosal stimulates Ca2+ flux through inositol 1,4,5-trisphosphate receptor type 1, but not type 3, via modulation of an isoform-specific Ca2+-dependent intramolecular interaction. Biochem J 381:87–96. https://doi.org/10.1042/BJ20040072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bultynck G, Sienaert I, Parys JB et al (2003) Pharmacology of inositol trisphosphate receptors. Pflugers Arch 445:629–642. https://doi.org/10.1007/s00424-002-0971-1

    Article  CAS  PubMed  Google Scholar 

  51. Saleem H, Tovey SC, Molinski TF, Taylor CW (2014) Interactions of antagonists with subtypes of inositol 1,4,5-trisphosphate (IP3) receptor. Br J Pharmacol 171:3298–3312. https://doi.org/10.1111/bph.12685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Swarbrick JM, Riley AM, Mills SJ, Potter BVL (2015) Designer small molecules to target calcium signalling. Biochem Soc Trans 43:417–425. https://doi.org/10.1042/BST20140293

    Article  CAS  PubMed  Google Scholar 

  53. Fredericks GJ, Hoffmann FW, Rose AH et al (2014) Stable expression and function of the inositol 1,4,5-triphosphate receptor requires palmitoylation by a DHHC6/selenoprotein K complex. Proc Natl Acad Sci USA 111:16478–16483. https://doi.org/10.1073/pnas.1417176111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hamada K, Terauchi A, Nakamura K et al (2014) Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci USA 111:E3966–E3975. https://doi.org/10.1073/pnas.1409730111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bultynck G, Vermassen E, Szlufcik K et al (2003) Calcineurin and intracellular Ca2+-release channels: regulation or association? Biochem Biophys Res Commun 311:1181–1193

    Article  CAS  PubMed  Google Scholar 

  56. Vanderheyden V, Devogelaere B, Missiaen L et al (2009) Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation. Biochim Biophys Acta 1793:959–970. https://doi.org/10.1016/j.bbamcr.2008.12.003

    Article  CAS  PubMed  Google Scholar 

  57. Prole DL, Taylor CW (2016) Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs. J Physiol 594:2849–2866. https://doi.org/10.1113/JP271139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ando H, Mizutani A, Kiefer H et al (2006) IRBIT suppresses IP3 receptor activity by competing with IP3 for the common binding site on the IP3 receptor. Mol Cell 22:795–806. https://doi.org/10.1016/j.molcel.2006.05.017

    Article  CAS  PubMed  Google Scholar 

  59. Devogelaere B, Beullens M, Sammels E et al (2007) Protein phosphatase-1 is a novel regulator of the interaction between IRBIT and the inositol 1,4,5-trisphosphate receptor. Biochem J 407:303–311. https://doi.org/10.1042/BJ20070361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Michikawa T, Hirota J, Kawano S et al (1999) Calmodulin mediates calcium-dependent inactivation of the cerebellar type 1 inositol 1,4,5-trisphosphate receptor. Neuron 23:799–808

    Article  CAS  PubMed  Google Scholar 

  61. Missiaen L, Parys JB, Weidema AF et al (1999) The bell-shaped Ca2+ dependence of the inositol 1,4, 5-trisphosphate-induced Ca2+ release is modulated by Ca2+/calmodulin. J Biol Chem 274:13748–13751

    Article  CAS  PubMed  Google Scholar 

  62. Patel S, Morris SA, Adkins CE et al (1997) Ca2+-independent inhibition of inositol trisphosphate receptors by calmodulin: redistribution of calmodulin as a possible means of regulating Ca2+ mobilization. Proc Natl Acad Sci USA 94:11627–11632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sienaert I, Nadif Kasri N, Vanlingen S et al (2002) Localization and function of a calmodulin-apocalmodulin-binding domain in the N-terminal part of the type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 365:269–277. https://doi.org/10.1042/BJ20020144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yamada M, Miyawaki A, Saito K et al (1995) The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 308:83–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Haynes LP, Tepikin AV, Burgoyne RD (2004) Calcium-binding protein 1 is an inhibitor of agonist-evoked, inositol 1,4,5-trisphosphate-mediated calcium signaling. J Biol Chem 279:547–555. https://doi.org/10.1074/jbc.M309617200

    Article  CAS  PubMed  Google Scholar 

  66. Kasri NN, Holmes AM, Bultynck G et al (2004) Regulation of InsP3 receptor activity by neuronal Ca2+-binding proteins. EMBO J 23:312–321. https://doi.org/10.1038/sj.emboj.7600037

    Article  CAS  PubMed  Google Scholar 

  67. Yang J, McBride S, Mak D-OD et al (2002) Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca2+ release channels. Proc Natl Acad Sci USA 99:7711–7716. https://doi.org/10.1073/pnas.102006299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen R, Valencia I, Zhong F et al (2004) Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biol 166:193–203. https://doi.org/10.1083/jcb.200309146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Eckenrode EF, Yang J, Velmurugan GV et al (2010) Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. J Biol Chem 285:13678–13684. https://doi.org/10.1074/jbc.M109.096040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rong Y-P, Bultynck G, Aromolaran AS et al (2009) The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. Proc Natl Acad Sci USA 106:14397–14402. https://doi.org/10.1073/pnas.0907555106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. White C, Li C, Yang J et al (2005) The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R. Nat Cell Biol 7:1021–1028. https://doi.org/10.1038/ncb1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xu S, Xu Y, Chen L et al (2017) RCN1 suppresses ER stress-induced apoptosis via calcium homeostasis and PERK-CHOP signaling. Oncogenesis 6:e304. https://doi.org/10.1038/oncsis.2017.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Decuypere J-P, Welkenhuyzen K, Luyten T et al (2011) Ins(1,4,5)P3 receptor-mediated Ca2+ signaling and autophagy induction are interrelated. Autophagy 7:1472–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vicencio JM, Ortiz C, Criollo A et al (2009) The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ 16:1006–1017. https://doi.org/10.1038/cdd.2009.34

    Article  CAS  PubMed  Google Scholar 

  75. Higo T, Hattori M, Nakamura T et al (2005) Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120:85–98. https://doi.org/10.1016/j.cell.2004.11.048

    Article  CAS  PubMed  Google Scholar 

  76. Higo T, Hamada K, Hisatsune C et al (2010) Mechanism of ER stress-induced brain damage by IP3 receptor. Neuron 68:865–878. https://doi.org/10.1016/j.neuron.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  77. Hayashi T, Su TP (2001) Regulating ankyrin dynamics: Roles of sigma-1 receptors. Proc Natl Acad Sci USA 98:491–496. https://doi.org/10.1073/pnas.021413698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Boehning D, Patterson RL, Sedaghat L et al (2003) Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5:1051–1061. https://doi.org/10.1038/ncb1063

    Article  CAS  PubMed  Google Scholar 

  79. Akl H, Bultynck G (2013) Altered Ca2+ signaling in cancer cells: proto-oncogenes and tumor suppressors targeting IP3 receptors. Biochim Biophys Acta 1835:180–193. https://doi.org/10.1016/j.bbcan.2012.12.001

    CAS  PubMed  Google Scholar 

  80. Ivanova H, Kerkhofs M, La Rovere R, Bultynck G (2017) Endoplasmic reticulum–mitochondrial Ca2+ fluxes underlying cancer cell survival. Front Oncol 7:Article 70. https://doi.org/10.3389/fonc.2017.00070

    Article  PubMed  Google Scholar 

  81. Decrock E, De Bock M, Wang N et al (2013) IP3, a small molecule with a powerful message. Biochim Biophys Acta 1833:1772–1786. https://doi.org/10.1016/j.bbamcr.2012.12.016

    Article  CAS  PubMed  Google Scholar 

  82. Distelhorst CW, Bootman MD (2011) Bcl-2 interaction with the inositol 1,4,5-trisphosphate receptor: role in Ca2+ signaling and disease. Cell Calcium 50:234–241. https://doi.org/10.1016/j.ceca.2011.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ivanova H, Vervliet T, Missiaen L et al (2014) Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival. Biochim Biophys Acta 1843:2164–2183. https://doi.org/10.1016/j.bbamcr.2014.03.007

    Article  CAS  PubMed  Google Scholar 

  84. Joseph SK, Hajnóczky G (2007) IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond. Apoptosis 12:951–968. https://doi.org/10.1007/s10495-007-0719-7

    Article  CAS  PubMed  Google Scholar 

  85. La Rovere RML, Roest G, Bultynck G, Parys JB (2016) Intracellular Ca2+ signaling and Ca2+ microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium 60:74–87. https://doi.org/10.1016/j.ceca.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  86. Smaili SS, Pereira GJS, Costa MM et al (2013) The role of calcium stores in apoptosis and autophagy. Curr Mol Med 13:252–265

    Article  CAS  PubMed  Google Scholar 

  87. Bootman MD, Chehab T, Bultynck G, et al (2018) Autophagy and calcium signalling: do we have a consensus? Cell Calcium. https://doi.org/10.1016/j.ceca.2017.08.005.

  88. Ghislat G, Knecht E (2013) Ca2+-sensor proteins in the autophagic and endocytic traffic. Curr Protein Pept Sci 14:97–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Parys JB, Decuypere J-P, Bultynck G (2012) Role of the inositol 1,4,5-trisphosphate receptor/Ca2+-release channel in autophagy. Cell Commun Signal CCS 10:17. https://doi.org/10.1186/1478-811X-10-17

    Article  CAS  PubMed  Google Scholar 

  90. Sun F, Xu X, Wang X, Zhang B (2016) Regulation of autophagy by Ca2+. Tumour Biol 37(12):15467–15476. https://doi.org/10.1007/s13277-016-5353-y

    Article  CAS  PubMed Central  Google Scholar 

  91. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63. https://doi.org/10.1038/nrm3722

    Article  CAS  PubMed  Google Scholar 

  92. Letai AG (2008) Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer 8:121–132. https://doi.org/10.1038/nrc2297

    Article  CAS  PubMed  Google Scholar 

  93. Tait SWG, Green DR (2013) Mitochondrial regulation of cell death. Cold Spring Harb Perspect Biol 5:a008706. https://doi.org/10.1101/cshperspect.a008706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pinton P, Giorgi C, Siviero R et al (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27:6407–6418. https://doi.org/10.1038/onc.2008.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hwang M-S, Schwall CT, Pazarentzos E et al (2014) Mitochondrial Ca2+ influx targets cardiolipin to disintegrate respiratory chain complex II for cell death induction. Cell Death Differ 21:1733–1745. https://doi.org/10.1038/cdd.2014.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bonora M, Bononi A, De Marchi E et al (2013) Role of the c subunit of the F0 ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683. https://doi.org/10.4161/cc.23599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Giorgio V, von Stockum S, Antoniel M et al (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 110:5887–5892. https://doi.org/10.1073/pnas.1217823110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Giorgio V, Guo L, Bassot C, et al (2018) Calcium and regulation of the mitochondrial permeability transition. Cell Calcium. https://doi.org/10.1016/j.ceca.2017.05.004

  99. Giorgio V, Burchell V, Schiavone M et al (2017) Ca2+ binding to F-ATP synthase β subunit triggers the mitochondrial permeability transition. EMBO Rep 18(7):1065–1076

    Article  CAS  PubMed  Google Scholar 

  100. Bender T, Martinou J-C (2013) Where killers meet--permeabilization of the outer mitochondrial membrane during apoptosis. Cold Spring Harb Perspect Biol 5:a011106. https://doi.org/10.1101/cshperspect.a011106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang HG, Pathan N, Ethell IM et al (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284:339–343

    Article  CAS  PubMed  Google Scholar 

  102. Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta 1833:3460–3470. https://doi.org/10.1016/j.bbamcr.2013.06.028

    Article  CAS  PubMed  Google Scholar 

  103. Urra H, Dufey E, Lisbona F et al (2013) When ER stress reaches a dead end. Biochim Biophys Acta 1833:3507–3517. https://doi.org/10.1016/j.bbamcr.2013.07.024

    Article  CAS  PubMed  Google Scholar 

  104. Ravikumar B, Sarkar S, Davies JE et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435. https://doi.org/10.1152/physrev.00030.2009

    Article  CAS  PubMed  Google Scholar 

  105. Liu Y, Levine B (2015) Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22:367–376. https://doi.org/10.1038/cdd.2014.143

    Article  CAS  PubMed  Google Scholar 

  106. Liu Y, Shoji-Kawata S, Sumpter RM et al (2013) Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci USA 110:20364–20371. https://doi.org/10.1073/pnas.1319661110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bento CF, Renna M, Ghislat G et al (2016) Mammalian autophagy: how does it work? Annu Rev Biochem 85:685–713. https://doi.org/10.1146/annurev-biochem-060815-014556

    Article  CAS  PubMed  Google Scholar 

  108. Wesselborg S, Stork B (2015) Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci 72:4721–4757. https://doi.org/10.1007/s00018-015-2034-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hamasaki M, Furuta N, Matsuda A et al (2013) Autophagosomes form at ER-mitochondria contact sites. Nature 495:389–393. https://doi.org/10.1038/nature11910

    Article  CAS  PubMed  Google Scholar 

  110. Hayashi-Nishino M, Fujita N, Noda T et al (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11:1433–1437. https://doi.org/10.1038/ncb1991

    Article  CAS  PubMed  Google Scholar 

  111. Ylä-Anttila P, Vihinen H, Jokitalo E, Eskelinen E-L (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5:1180–1185

    Article  PubMed  Google Scholar 

  112. Roberts R, Ktistakis NT (2013) Omegasomes: PI3P platforms that manufacture autophagosomes. Essays Biochem 55:17–27. https://doi.org/10.1042/bse0550017

    Article  CAS  PubMed  Google Scholar 

  113. Proikas-Cezanne T, Takacs Z, Dönnes P, Kohlbacher O (2015) WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome. J Cell Sci 128:207–217. https://doi.org/10.1242/jcs.146258

    Article  CAS  PubMed  Google Scholar 

  114. Decuypere J-P, Kindt D, Luyten T et al (2013) mTOR-controlled autophagy requires intracellular Ca2+ signaling. PloS One 8:e61020. https://doi.org/10.1371/journal.pone.0061020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Grotemeier A, Alers S, Pfisterer SG et al (2010) AMPK-independent induction of autophagy by cytosolic Ca2+ increase. Cell Signal 22:914–925. https://doi.org/10.1016/j.cellsig.2010.01.015

    Article  CAS  PubMed  Google Scholar 

  116. Høyer-Hansen M, Bastholm L, Szyniarowski P et al (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25:193–205. https://doi.org/10.1016/j.molcel.2006.12.009

    Article  CAS  PubMed  Google Scholar 

  117. Luyten T, Welkenhuyzen K, Roest G et al (2017) Resveratrol-induced autophagy is dependent on IP3Rs and on cytosolic Ca2+. Biochim Biophys Acta 1864:947–956. https://doi.org/10.1016/j.bbamcr.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  118. Messai Y, Noman MZ, Hasmim M et al (2014) ITPR1 protects renal cancer cells against natural killer cells by inducing autophagy. Cancer Res 74:6820–6832. https://doi.org/10.1158/0008-5472.CAN-14-0303

    Article  CAS  PubMed  Google Scholar 

  119. Engedal N, Torgersen ML, Guldvik IJ et al (2013) Modulation of intracellular calcium homeostasis blocks autophagosome formation. Autophagy 9:1475–1490. https://doi.org/10.4161/auto.25900

    Article  CAS  PubMed  Google Scholar 

  120. Gulati P, Gaspers LD, Dann SG et al (2008) Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab 7:456–465. https://doi.org/10.1016/j.cmet.2008.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Khan MT, Joseph SK (2010) Role of inositol trisphosphate receptors in autophagy in DT40 cells. J Biol Chem 285:16912–16920. https://doi.org/10.1074/jbc.M110.114207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sarkar S, Floto RA, Berger Z et al (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170:1101–1111. https://doi.org/10.1083/jcb.200504035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cárdenas C, Foskett JK (2012) Mitochondrial Ca2+signals in autophagy. Cell Calcium 52:44–51. https://doi.org/10.1016/j.ceca.2012.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Decuypere J-P, Bultynck G, Parys JB (2011) A dual role for Ca2+ in autophagy regulation. Cell Calcium 50:242–250. https://doi.org/10.1016/j.ceca.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  125. East DA, Campanella M (2013) Ca2+ in quality control: an unresolved riddle critical to autophagy and mitophagy. Autophagy 9:1710–1719. https://doi.org/10.4161/auto.25367

    Article  CAS  PubMed  Google Scholar 

  126. Rimessi A, Bonora M, Marchi S et al (2013) Perturbed mitochondrial Ca2+ signals as causes or consequences of mitophagy induction. Autophagy 9:1677–1686. https://doi.org/10.4161/auto.24795

    Article  CAS  PubMed  Google Scholar 

  127. Vicencio JM, Lavandero S, Szabadkai G (2010) Ca2+, autophagy and protein degradation: thrown off balance in neurodegenerative disease. Cell Calcium 47:112–121. https://doi.org/10.1016/j.ceca.2009.12.013

    Article  CAS  PubMed  Google Scholar 

  128. Decuypere J-P, Monaco G, Bultynck G et al (2011) The IP3 receptor-mitochondria connection in apoptosis and autophagy. Biochim Biophys Acta 1813:1003–1013. https://doi.org/10.1016/j.bbamcr.2010.11.023

    Article  CAS  PubMed  Google Scholar 

  129. Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578. https://doi.org/10.1038/nrm3412

    Article  CAS  PubMed  Google Scholar 

  130. Giacomello M, Pellegrini L (2016) The coming of age of the mitochondria-ER contact: a matter of thickness. Cell Death Differ 23:1417–1427. https://doi.org/10.1038/cdd.2016.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Danese A, Patergnani S, Bonora M et al (2017) Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs). Biochim Biophys Acta 1858(8):615–627. https://doi.org/10.1016/j.bbabio.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  132. Giorgi C, Missiroli S, Patergnani S et al (2015) Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid Redox Signal 22:995–1019. https://doi.org/10.1089/ars.2014.6223

    Article  CAS  PubMed  Google Scholar 

  133. Herrera-Cruz MS, Simmen T (2017) Of yeast, mice and men: MAMs come in two flavors. Biol Direct 12:3. https://doi.org/10.1186/s13062-017-0174-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Naon D, Scorrano L (2014) At the right distance: ER-mitochondria juxtaposition in cell life and death. Biochim Biophys Acta 1843:2184–2194. https://doi.org/10.1016/j.bbamcr.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  135. van Vliet AR, Verfaillie T, Agostinis P (2014) New functions of mitochondria associated membranes in cellular signaling. Biochim Biophys Acta 1843:2253–2262. https://doi.org/10.1016/j.bbamcr.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  136. Vervliet T, Clerix E, Seitaj B et al (2017) Modulation of Ca2+ signaling by anti-apoptotic B-cell lymphoma 2 proteins at the endoplasmic reticulum–mitochondrial interface. Front Oncol 7:Article 75. https://doi.org/10.3389/fonc.2017.00075

    Article  PubMed  Google Scholar 

  137. Csordás G, Renken C, Várnai P et al (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174:915–921. https://doi.org/10.1083/jcb.200604016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Filadi R, Theurey P, Pizzo P (2017) The endoplasmic reticulum-mitochondria coupling in health and disease: Molecules, functions and significance. Cell Calcium 62:1–15. https://doi.org/10.1016/j.ceca.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  139. Paillusson S, Stoica R, Gómez-Suaga P et al (2016) There’s something wrong with my MAM; the ER-mitochondria axis and neurodegenerative diseases. Trends Neurosci 39:146–157. https://doi.org/10.1016/j.tins.2016.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Szabadkai G, Bianchi K, Várnai P et al (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175:901–911. https://doi.org/10.1083/jcb.200608073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Csordás G, Thomas AP, Hajnóczky G (1999) Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18:96–108. https://doi.org/10.1093/emboj/18.1.96

    Article  PubMed  PubMed Central  Google Scholar 

  142. Csordás G, Várnai P, Golenár T et al (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132. https://doi.org/10.1016/j.molcel.2010.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Giacomello M, Drago I, Bortolozzi M et al (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38:280–290. https://doi.org/10.1016/j.molcel.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  144. Murgia M, Rizzuto R (2015) Molecular diversity and pleiotropic role of the mitochondrial calcium uniporter. Cell Calcium 58:11–17. https://doi.org/10.1016/j.ceca.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  145. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610. https://doi.org/10.1038/nature07534

    Article  CAS  PubMed  Google Scholar 

  146. Naon D, Zaninello M, Giacomello M et al (2016) Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc Natl Acad Sci USA 113:11249–11254. https://doi.org/10.1073/pnas.1606786113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cerqua C, Anesti V, Pyakurel A et al (2010) Trichoplein/mitostatin regulates endoplasmic reticulum-mitochondria juxtaposition. EMBO Rep 11:854–860. https://doi.org/10.1038/embor.2010.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sugiura A, Nagashima S, Tokuyama T et al (2013) MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Mol Cell 51:20–34. https://doi.org/10.1016/j.molcel.2013.04.023

    Article  CAS  PubMed  Google Scholar 

  149. Cosson P, Marchetti A, Ravazzola M, Orci L (2012) Mitofusin-2 independent juxtaposition of endoplasmic reticulum and mitochondria: an ultrastructural study. PloS One 7:e46293. https://doi.org/10.1371/journal.pone.0046293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Filadi R, Greotti E, Turacchio G et al (2015) Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proc Natl Acad Sci USA 112:E2174–E2181. https://doi.org/10.1073/pnas.1504880112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Leal NS, Schreiner B, Pinho CM et al (2016) Mitofusin-2 knockdown increases ER-mitochondria contact and decreases amyloid β-peptide production. J Cell Mol Med 20:1686–1695. https://doi.org/10.1111/jcmm.12863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang PTC, Garcin PO, Fu M et al (2015) Distinct mechanisms controlling rough and smooth endoplasmic reticulum contacts with mitochondria. J Cell Sci 128:2759–2765. https://doi.org/10.1242/jcs.171132

    Article  CAS  PubMed  Google Scholar 

  153. Filadi R, Greotti E, Turacchio G et al (2017) On the role of Mitofusin 2 in endoplasmic reticulum-mitochondria tethering. Proc Natl Acad Sci USA 114:E2266–E2267. https://doi.org/10.1073/pnas.1616040114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Naon D, Zaninello M, Giacomello M et al (2017) Reply to Filadi et al.: does Mitofusin 2 tether or separate endoplasmic reticulum and mitochondria? Proc Natl Acad Sci USA 114:E2268–E2269. https://doi.org/10.1073/pnas.1618610114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Walker AK, Atkin JD (2011) Stress signaling from the endoplasmic reticulum: a central player in the pathogenesis of amyotrophic lateral sclerosis. IUBMB Life 63:754–763. https://doi.org/10.1002/iub.520

    CAS  PubMed  Google Scholar 

  156. De Vos KJ, Mórotz GM, Stoica R et al (2012) VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet 21:1299–1311. https://doi.org/10.1093/hmg/ddr559

    Article  CAS  PubMed  Google Scholar 

  157. Nishimura AL, Mitne-Neto M, Silva HC et al (2004) A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75:822–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Iwasawa R, Mahul-Mellier A-L, Datler C et al (2011) Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J 30:556–568. https://doi.org/10.1038/emboj.2010.346

    Article  CAS  PubMed  Google Scholar 

  159. Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160:1115–1127. https://doi.org/10.1083/jcb.200212059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Simmen T, Aslan JE, Blagoveshchenskaya AD et al (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 24:717–729. https://doi.org/10.1038/sj.emboj.7600559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Verfaillie T, Rubio N, Garg AD et al (2012) PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ 19:1880–1891. https://doi.org/10.1038/cdd.2012.74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gellerich FN, Gizatullina Z, Gainutdinov T et al (2013) The control of brain mitochondrial energization by cytosolic calcium: the mitochondrial gas pedal. IUBMB Life 65:180–190. https://doi.org/10.1002/iub.1131

    Article  CAS  PubMed  Google Scholar 

  163. McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425

    Article  CAS  PubMed  Google Scholar 

  164. Glancy B, Balaban RS (2012) Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry (Mosc) 51:2959–2973. https://doi.org/10.1021/bi2018909

    Article  CAS  Google Scholar 

  165. Shanmughapriya S, Rajan S, Hoffman NE et al (2015) Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU. Sci Signal 8:ra23. https://doi.org/10.1126/scisignal.2005673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sugawara H, Kurosaki M, Takata M, Kurosaki T (1997) Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J 16:3078–3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wen H, Xu WJ, Jin X et al (2015) The roles of IP3 receptor in energy metabolic pathways and reactive oxygen species homeostasis revealed by metabolomic and biochemical studies. Biochim Biophys Acta 1853:2937–2944. https://doi.org/10.1016/j.bbamcr.2015.07.020

    Article  CAS  PubMed  Google Scholar 

  168. Cárdenas C, Miller RA, Smith I et al (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142:270–283. https://doi.org/10.1016/j.cell.2010.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gómez-Suaga P, Paillusson S, Stoica R et al (2017) The ER-mitochondria tethering complex VAPB-PTPIP51 regulates autophagy. Curr Biol 27:371–385. https://doi.org/10.1016/j.cub.2016.12.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Bultynck G (2016) Onco-IP3Rs feed cancerous cravings for mitochondrial Ca2+. Trends Biochem Sci 41:390–393. https://doi.org/10.1016/j.tibs.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  171. Cárdenas C, Müller M, McNeal A et al (2016) Selective vulnerability of cancer cells by inhibition of Ca2+ transfer from endoplasmic reticulum to mitochondria. Cell Rep 15:219–220. https://doi.org/10.1016/j.celrep.2016.03.045

    Article  CAS  PubMed  Google Scholar 

  172. Krols M, Bultynck G, Janssens S (2016) ER-Mitochondria contact sites: a new regulator of cellular calcium flux comes into play. J Cell Biol 214:367–370. https://doi.org/10.1083/jcb.201607124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Raturi A, Gutiérrez T, Ortiz-Sandoval C et al (2016) TMX1 determines cancer cell metabolism as a thiol-based modulator of ER-mitochondria Ca2+ flux. J Cell Biol 214:433–444. https://doi.org/10.1083/jcb.201512077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Granatiero V, Giorgio V, Calì T et al (2016) Reduced mitochondrial Ca2+ transients stimulate autophagy in human fibroblasts carrying the 13514A>G mutation of the ND5 subunit of NADH dehydrogenase. Cell Death Differ 23:231–241. https://doi.org/10.1038/cdd.2015.84

    Article  CAS  PubMed  Google Scholar 

  175. MacVicar TDB, Mannack LVJC, Lees RM, Lane JD (2015) Targeted siRNA screens identify ER-to-mitochondrial calcium exchange in autophagy and mitophagy responses in RPE1 cells. Int J Mol Sci 16:13356–13380. https://doi.org/10.3390/ijms160613356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hayashi T, Su T-P (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131:596–610. https://doi.org/10.1016/j.cell.2007.08.036

    Article  CAS  PubMed  Google Scholar 

  177. Chan J, Yamazaki H, Ishiyama N et al (2010) Structural studies of inositol 1,4,5-trisphosphate receptor: coupling ligand binding to channel gating. J Biol Chem 285:36092–36099. https://doi.org/10.1074/jbc.M110.140160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Williams A, Hayashi T, Wolozny D et al (2016) The non-apoptotic action of Bcl-xL: regulating Ca2+ signaling and bioenergetics at the ER-mitochondrion interface. J Bioenerg Biomembr 48:211–225. https://doi.org/10.1007/s10863-016-9664-x

    Article  CAS  PubMed  Google Scholar 

  179. Yang J, Vais H, Gu W, Foskett JK (2016) Biphasic regulation of InsP3 receptor gating by dual Ca2+ release channel BH3-like domains mediates Bcl-XL control of cell viability. Proc Natl Acad Sci USA 113:E1953–E1962. https://doi.org/10.1073/pnas.1517935113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sung PJ, Tsai FD, Vais H et al (2013) Phosphorylated K-Ras limits cell survival by blocking Bcl-xL sensitization of inositol trisphosphate receptors. Proc Natl Acad Sci USA 110:20593–20598. https://doi.org/10.1073/pnas.1306431110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Mendes CCP, Gomes DA, Thompson M et al (2005) The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J Biol Chem 280:40892–40900. https://doi.org/10.1074/jbc.M506623200

    Article  CAS  PubMed  Google Scholar 

  182. De Stefani D, Bononi A, Romagnoli A et al (2012) VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria. Cell Death Differ 19:267–273. https://doi.org/10.1038/cdd.2011.92

    Article  CAS  PubMed  Google Scholar 

  183. Akl H, Monaco G, La Rovere R et al (2013) IP3R2 levels dictate the apoptotic sensitivity of diffuse large B-cell lymphoma cells to an IP3R-derived peptide targeting the BH4 domain of Bcl-2. Cell Death Dis 4:e632. https://doi.org/10.1038/cddis.2013.140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Jayaraman T, Marks AR (1997) T cells deficient in inositol 1,4,5-trisphosphate receptor are resistant to apoptosis. Mol Cell Biol 17:3005–3012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Csordás G, Hajnóczky G (2001) Sorting of calcium signals at the junctions of endoplasmic reticulum and mitochondria. Cell Calcium 29:249–262. https://doi.org/10.1054/ceca.2000.0191

    Article  PubMed  Google Scholar 

  186. Chami M, Oulès B, Szabadkai G et al (2008) Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol Cell 32:641–651. https://doi.org/10.1016/j.molcel.2008.11.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Akl H, Vervloessem T, Kiviluoto S et al (2014) A dual role for the anti-apoptotic Bcl-2 protein in cancer: mitochondria versus endoplasmic reticulum. Biochim Biophys Acta 1843:2240–2252. https://doi.org/10.1016/j.bbamcr.2014.04.017

    Article  CAS  PubMed  Google Scholar 

  188. Greenberg EF, Lavik AR, Distelhorst CW (2014) Bcl-2 regulation of the inositol 1,4,5-trisphosphate receptor and calcium signaling in normal and malignant lymphocytes: potential new target for cancer treatment. Biochim Biophys Acta 1843:2205–2210. https://doi.org/10.1016/j.bbamcr.2014.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lewis A, Hayashi T, Su T-P, Betenbaugh MJ (2014) Bcl-2 family in inter-organelle modulation of calcium signaling; roles in bioenergetics and cell survival. J Bioenerg Biomembr 46:1–15. https://doi.org/10.1007/s10863-013-9527-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Parys JB (2014) The IP3 receptor as a hub for Bcl-2 family proteins in cell death control and beyond. Sci Signal 7:pe4. https://doi.org/10.1126/scisignal.2005093

    Article  CAS  PubMed  Google Scholar 

  191. Vervliet T, Parys JB, Bultynck G (2016) Bcl-2 proteins and calcium signaling: complexity beneath the surface. Oncogene 35:5079–5092. https://doi.org/10.1038/onc.2016.31

    Article  CAS  PubMed  Google Scholar 

  192. Rong Y-P, Aromolaran AS, Bultynck G et al (2008) Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2’s inhibition of apoptotic calcium signals. Mol Cell 31:255–265. https://doi.org/10.1016/j.molcel.2008.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Monaco G, Decrock E, Akl H et al (2012) Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-XL. Cell Death Differ 19:295–309. https://doi.org/10.1038/cdd.2011.97

    Article  CAS  PubMed  Google Scholar 

  194. Monaco G, Decrock E, Arbel N et al (2015) The BH4 domain of anti-apoptotic Bcl-XL, but not that of the related Bcl-2, limits the voltage-dependent anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic Ca22+ signals to mitochondria. J Biol Chem 290:9150–9161. https://doi.org/10.1074/jbc.M114.622514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zhong F, Harr MW, Bultynck G et al (2011) Induction of Ca2+-driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2-IP3 receptor interaction. Blood 117:2924–2934. https://doi.org/10.1182/blood-2010-09-307405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lavik AR, Zhong F, Chang M-J et al (2015) A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2. Oncotarget 6:27388–27402. https://doi.org/10.18632/oncotarget.4489

    Article  PubMed  PubMed Central  Google Scholar 

  197. Greenberg EF, McColl KS, Zhong F et al (2015) Synergistic killing of human small cell lung cancer cells by the Bcl-2-inositol 1,4,5-trisphosphate receptor disruptor BIRD-2 and the BH3-mimetic ABT-263. Cell Death Dis 6:e2034. https://doi.org/10.1038/cddis.2015.355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Khan MT, Wagner L, Yule DI et al (2006) Akt kinase phosphorylation of inositol 1,4,5-trisphosphate receptors. J Biol Chem 281:3731–3737. https://doi.org/10.1074/jbc.M509262200

    Article  CAS  PubMed  Google Scholar 

  199. Marchi S, Rimessi A, Giorgi C et al (2008) Akt kinase reducing endoplasmic reticulum Ca2+ release protects cells from Ca2+-dependent apoptotic stimuli. Biochem Biophys Res Commun 375:501–505. https://doi.org/10.1016/j.bbrc.2008.07.153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Szado T, Vanderheyden V, Parys JB et al (2008) Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc Natl Acad Sci USA 105:2427–2432. https://doi.org/10.1073/pnas.0711324105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Marchi S, Marinello M, Bononi A et al (2012) Selective modulation of subtype III IP3R by Akt regulates ER Ca2+ release and apoptosis. Cell Death Dis 3:e304. https://doi.org/10.1038/cddis.2012.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Bononi A, Bonora M, Marchi S et al (2013) Identification of PTEN at the ER and MAMs and its regulation of Ca2+ signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death Differ 20:1631–1643. https://doi.org/10.1038/cdd.2013.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Kuchay S, Giorgi C, Simoneschi D et al (2017) PTEN counteracts FBXL2 to promote IP3R3- and Ca2+-mediated apoptosis limiting tumour growth. Nature 546:554–558. https://doi.org/10.1038/nature22965

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Ilyin GP, Rialland M, Glaise D, Guguen-Guillouzo C (1999) Identification of a novel Skp2-like mammalian protein containing F-box and leucine-rich repeats. FEBS Lett 459:75–79

    Article  CAS  PubMed  Google Scholar 

  205. Chen BB, Glasser JR, Coon TA, Mallampalli RK (2011) FBXL2 is a ubiquitin E3 ligase subunit that triggers mitotic arrest. Cell Cycle 10:3487–3494. https://doi.org/10.4161/cc.10.20.17742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Chen BB, Glasser JR, Coon TA, Mallampalli RK (2012) F-box protein FBXL2 exerts human lung tumor suppressor-like activity by ubiquitin-mediated degradation of cyclin D3 resulting in cell cycle arrest. Oncogene 31:2566–2579. https://doi.org/10.1038/onc.2011.432

    Article  CAS  PubMed  Google Scholar 

  207. Giorgi C, Ito K, Lin H-K et al (2010) PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330:1247–1251. https://doi.org/10.1126/science.1189157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Paillard M, Tubbs E, Thiebaut P-A et al (2013) Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Circulation 128:1555–1565. https://doi.org/10.1161/CIRCULATIONAHA.113.001225

    Article  CAS  PubMed  Google Scholar 

  209. Gomez L, Thiebaut P-A, Paillard M et al (2016) The SR/ER-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury. Cell Death Differ 23:313–322. https://doi.org/10.1038/cdd.2015.101

    Article  CAS  PubMed  Google Scholar 

  210. Wiel C, Lallet-Daher H, Gitenay D et al (2014) Endoplasmic reticulum calcium release through ITPR2 channels leads to mitochondrial calcium accumulation and senescence. Nat Commun 5:3792. https://doi.org/10.1038/ncomms4792

    Article  CAS  PubMed  Google Scholar 

  211. Morgan AJ (2016) Ca2+ dialogue between acidic vesicles and ER. Biochem Soc Trans 44:546–553. https://doi.org/10.1042/BST20150290

    Article  CAS  PubMed  Google Scholar 

  212. Morgan AJ, Platt FM, Lloyd-Evans E, Galione A (2011) Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem J 439:349–374. https://doi.org/10.1042/BJ20110949

    Article  CAS  PubMed  Google Scholar 

  213. Penny CJ, Kilpatrick BS, Eden ER, Patel S (2015) Coupling acidic organelles with the ER through Ca2+ microdomains at membrane contact sites. Cell Calcium 58:387–396. https://doi.org/10.1016/j.ceca.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  214. Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80. https://doi.org/10.1146/annurev-physiol-021014-071649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Melchionda M, Pittman JK, Mayor R, Patel S (2016) Ca2+/H+ exchange by acidic organelles regulates cell migration in vivo. J Cell Biol 212:803–813. https://doi.org/10.1083/jcb.201510019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Patel S, Cai X (2015) Evolution of acidic Ca2+ stores and their resident Ca2+-permeable channels. Cell Calcium 57:222–230. https://doi.org/10.1016/j.ceca.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  217. Galione A (2015) A primer of NAADP-mediated Ca2+ signalling: From sea urchin eggs to mammalian cells. Cell Calcium 58:27–47. https://doi.org/10.1016/j.ceca.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  218. Morgan AJ, Davis LC, Ruas M, Galione A (2015) TPC: the NAADP discovery channel? Biochem Soc Trans 43:384–389. https://doi.org/10.1042/BST20140300

    Article  CAS  PubMed  Google Scholar 

  219. Patel S (2015) Function and dysfunction of two-pore channels. Sci Signal 8:re7. https://doi.org/10.1126/scisignal.aab3314

    Article  CAS  PubMed  Google Scholar 

  220. Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258:1812–1815

    Article  CAS  PubMed  Google Scholar 

  221. Sukumaran P, Schaar A, Sun Y, Singh BB (2016) Functional role of TRP channels in modulating ER stress and autophagy. Cell Calcium 60:123–132. https://doi.org/10.1016/j.ceca.2016.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Waller-Evans H, Lloyd-Evans E (2015) Regulation of TRPML1 function. Biochem Soc Trans 43:442–446. https://doi.org/10.1042/BST20140311

    Article  CAS  PubMed  Google Scholar 

  223. Wang W, Zhang X, Gao Q, Xu H (2014) TRPML1: an ion channel in the lysosome. Handb Exp Pharmacol 222:631–645. https://doi.org/10.1007/978-3-642-54215-2_24

    Article  CAS  PubMed  Google Scholar 

  224. Galione A (2011) NAADP receptors. Cold Spring Harb Perspect Biol 3:a004036. https://doi.org/10.1101/cshperspect.a004036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Grimm C, Chen C-C, Wahl-Schott C, Biel M (2017) Two-pore channels: catalyzers of endolysosomal transport and function. Front Pharmacol 8:45. https://doi.org/10.3389/fphar.2017.00045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kilpatrick BS, Eden ER, Schapira AH et al (2013) Direct mobilisation of lysosomal Ca2+ triggers complex Ca2+ signals. J Cell Sci 126:60–66. https://doi.org/10.1242/jcs.118836

    Article  CAS  PubMed  Google Scholar 

  227. Fameli N, Ogunbayo OA, van Breemen C, Evans AM (2014) Cytoplasmic nanojunctions between lysosomes and sarcoplasmic reticulum are required for specific calcium signaling. F1000Research 3:93. https://doi.org/10.12688/f1000research.3720.1

    PubMed  PubMed Central  Google Scholar 

  228. Lam AKM, Galione A (2013) The endoplasmic reticulum and junctional membrane communication during calcium signaling. Biochim Biophys Acta 1833:2542–2559. https://doi.org/10.1016/j.bbamcr.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  229. Raiborg C, Wenzel EM, Stenmark H (2015) ER-endosome contact sites: molecular compositions and functions. EMBO J 34:1848–1858. https://doi.org/10.15252/embj.201591481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Cancela JM, Churchill GC, Galione A (1999) Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature 398:74–76. https://doi.org/10.1038/18032

    Article  CAS  PubMed  Google Scholar 

  231. Churchill GC, Galione A (2001) NAADP induces Ca2+ oscillations via a two-pool mechanism by priming IP3- and cADPR-sensitive Ca2+ stores. EMBO J 20:2666–2671. https://doi.org/10.1093/emboj/20.11.2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Gerasimenko JV, Charlesworth RM, Sherwood MW et al (2015) Both RyRs and TPCs are required for NAADP-induced intracellular Ca2+ release. Cell Calcium 58:237–245. https://doi.org/10.1016/j.ceca.2015.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Morgan AJ, Davis LC, Wagner SKTY et al (2013) Bidirectional Ca2+ signaling occurs between the endoplasmic reticulum and acidic organelles. J Cell Biol 200:789–805. https://doi.org/10.1083/jcb.201204078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. López Sanjurjo CI, Tovey SC, Taylor CW (2014) Rapid recycling of Ca2+ between IP3-sensitive stores and lysosomes. PloS One 9:e111275. https://doi.org/10.1371/journal.pone.0111275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. López-Sanjurjo CI, Tovey SC, Prole DL, Taylor CW (2013) Lysosomes shape Ins(1,4,5)P3-evoked Ca2+ signals by selectively sequestering Ca2+ released from the endoplasmic reticulum. J Cell Sci 126:289–300. https://doi.org/10.1242/jcs.116103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Kilpatrick BS, Yates E, Grimm C et al (2016) Endo-lysosomal TRP mucolipin-1 channels trigger global ER Ca2+ release and Ca2+ influx. J Cell Sci 129:3859–3867. https://doi.org/10.1242/jcs.190322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Decuypere J-P, Parys JB, Bultynck G (2015) ITPRs/inositol 1,4,5-trisphosphate receptors in autophagy: From enemy to ally. Autophagy 11:1944–1948. https://doi.org/10.1080/15548627.2015.1083666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Penny CJ, Kilpatrick BS, Han JM et al (2014) A computational model of lysosome-ER Ca2+ microdomains. J Cell Sci 127:2934–2943. https://doi.org/10.1242/jcs.149047

    Article  CAS  PubMed  Google Scholar 

  239. Raffaello A, Mammucari C, Gherardi G, Rizzuto R (2016) Calcium at the center of cell signaling: Interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem Sci 41:1035–1049. https://doi.org/10.1016/j.tibs.2016.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Ronco V, Potenza DM, Denti F et al (2015) A novel Ca2+-mediated cross-talk between endoplasmic reticulum and acidic organelles: implications for NAADP-dependent Ca2+ signalling. Cell Calcium 57:89–100. https://doi.org/10.1016/j.ceca.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  241. Gómez-Suaga P, Luzón-Toro B, Churamani D et al (2012) Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet 21:511–525. https://doi.org/10.1093/hmg/ddr481

    Article  CAS  PubMed  Google Scholar 

  242. Pereira GJS, Hirata H, Fimia GM et al (2011) Nicotinic acid adenine dinucleotide phosphate (NAADP) regulates autophagy in cultured astrocytes. J Biol Chem 286:27875–27881. https://doi.org/10.1074/jbc.C110.216580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Lin P-H, Duann P, Komazaki S et al (2015) Lysosomal two-pore channel subtype 2 (TPC2) regulates skeletal muscle autophagic signaling. J Biol Chem 290:3377–3389. https://doi.org/10.1074/jbc.M114.608471

    Article  CAS  PubMed  Google Scholar 

  244. Lu Y, Hao B-X, Graeff R et al (2013) Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH. J Biol Chem 288:24247–24263. https://doi.org/10.1074/jbc.M113.484253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Wong C-O, Li R, Montell C, Venkatachalam K (2012) Drosophila TRPML is required for TORC1 activation. Curr Biol 22:1616–1621. https://doi.org/10.1016/j.cub.2012.06.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Wang W, Gao Q, Yang M et al (2015) Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation. Proc Natl Acad Sci USA 112:E1373–E1381. https://doi.org/10.1073/pnas.1419669112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Li X, Rydzewski N, Hider A et al (2016) A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat Cell Biol 18:404–417. https://doi.org/10.1038/ncb3324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. García-Rúa V, Feijóo-Bandín S, Rodríguez-Penas D et al (2016) Endolysosomal two-pore channels regulate autophagy in cardiomyocytes. J Physiol 594:3061–3077. https://doi.org/10.1113/JP271332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Manzoni C (2017) The LRRK2-macroautophagy axis and its relevance to Parkinson’s disease. Biochem Soc Trans 45:155–162. https://doi.org/10.1042/BST20160265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Hockey LN, Kilpatrick BS, Eden ER et al (2015) Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by TPC2 inhibition. J Cell Sci 128:232–238. https://doi.org/10.1242/jcs.164152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Medina DL, Di Paola S, Peluso I et al (2015) Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 17:288–299. https://doi.org/10.1038/ncb3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Settembre C, Di Malta C, Polito VA et al (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433. https://doi.org/10.1126/science.1204592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Medina DL, Fraldi A, Bouche V et al (2011) Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell 21:421–430. https://doi.org/10.1016/j.devcel.2011.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Sardiello M, Palmieri M, di Ronza A et al (2009) A gene network regulating lysosomal biogenesis and function. Science 325:473–477. https://doi.org/10.1126/science.1174447

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

GR is recipient of a Ph.D. fellowship of the Research Fund—Flanders (FWO). Work performed in the laboratory of the authors was supported by research grants of the FWO, the Research Council of the KU Leuven and the Interuniversity Attraction Poles Programmes (Belgian Science Policy).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geert Bultynck or Jan B. Parys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roest, G., La Rovere, R.M., Bultynck, G., Parys, J.B. (2017). IP3 Receptor Properties and Function at Membrane Contact Sites. In: Krebs, J. (eds) Membrane Dynamics and Calcium Signaling. Advances in Experimental Medicine and Biology, vol 981. Springer, Cham. https://doi.org/10.1007/978-3-319-55858-5_7

Download citation

Publish with us

Policies and ethics