Skip to main content

Overcoming Initial Convergence in Multi-objective Evolution of Robot Control and Morphology Using a Two-Phase Approach

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10199))

Included in the following conference series:

Abstract

Co-evolution of robot morphologies and control systems is a new and interesting approach for robotic design. However, the increased size and ruggedness of the search space becomes a challenge, often leading to early convergence with sub-optimal morphology-controller combinations. Further, mutations in the robot morphologies tend to cause large perturbations in the search, effectively changing the environment, from the controller’s perspective. In this paper, we present a two-stage approach to tackle the early convergence in morphology-controller co-evolution. In the first phase, we allow free evolution of morphologies and controllers simultaneously, while in the second phase we re-evolve the controllers while locking the morphology. The feasibility of the approach is demonstrated in physics simulations, and later verified on three different real-world instances of the robot morphologies. The results demonstrate that by introducing the two-phase approach, the search produces solutions which outperform the single co-evolutionary run by over 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bongard, J.C.: Evolutionary robotics. Commun. ACM 56(8), 74–83 (2013)

    Article  Google Scholar 

  2. Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.E.G.G.: Evolutionary robotics: what, why, and where to. Front. Robot. AI 2, 4 (2015)

    Article  Google Scholar 

  3. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406(6799), 974–978 (2000)

    Article  Google Scholar 

  4. Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 15–22. ACM (1994)

    Google Scholar 

  5. Lessin, D., Risi, S.: Soft-body muscles for evolved virtual creatures: the next step on a bio-mimetic path to meaningful morphological complexity. In: European Conference on Artificial Life, pp. 761–762 (2015)

    Google Scholar 

  6. Hornby, G.S., Lipson, H., Pollack, J.B.: Generative representations for the automated design of modular physical robots. IEEE Trans. Robot. Autom. 19(4), 703–719 (2003)

    Article  Google Scholar 

  7. Samuelsen, E., Glette, K.: Real-world reproduction of evolved robot morphologies: automated categorization and evaluation. In: Mora, A.M., Squillero, G. (eds.) EvoApplications 2015. LNCS, vol. 9028, pp. 771–782. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16549-3_62

    Google Scholar 

  8. Brodbeck, L., Hauser, S., Iida, F.: Morphological evolution of physical robots through model-free phenotype development. PLoS ONE 10(6), 1–17 (2015)

    Article  Google Scholar 

  9. Cheney, N., Bongard, J., Sunspiral, V., Lipson, H.: On the difficulty of co-optimizing morphology and control in evolved virtual creatures. In: Proceedings of the Artificial Life Conference 2016 (ALIFE XV), pp. 226–234. MIT Press (2016)

    Google Scholar 

  10. Samuelsen, E., Glette, K.: Some distance measures for morphological diversification in generative evolutionary robotics. In: GECCO 2014 - Proceedings of the 2014 Genetic and Evolutionary Computation Conference, pp. 721–728 (2014)

    Google Scholar 

  11. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

    Article  Google Scholar 

  12. Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary robotics: an empirical study. Evol. Comput. 20(1), 91–133 (2012)

    Article  Google Scholar 

  13. Cheney, N., MacCurdy, R., Clune, J., Lipson, H.: Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 167–174. ACM (2013)

    Google Scholar 

  14. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 211–218. ACM (2011)

    Google Scholar 

  15. Auerbach, J.E., Bongard, J.C.: Environmental influence on the evolution of morphological complexity in machines. PLoS Comput. Biol. 10(1), e1003399 (2014)

    Article  Google Scholar 

  16. Lund, H.H.: Co-evolving control and morphology with LEGO robots. In: Hara, F., Pfeifer, R. (eds.) Morpho-functional Machines: The New Species, pp. 59–79. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Leger, C.: Automated synthesis and optimization of robot configurations: an evolutionary approach. Ph.D. thesis, Carnegie Mellon University (1999)

    Google Scholar 

  18. Passault, G., Rouxel, Q., Fabre, R., N’Guyen, S., Ly, O.: Optimizing morphology and locomotion on a corpus of parametric legged robots. In: Lepora, N., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T.J.J. (eds.) Living Machines 2016. LNCS (LNAI), vol. 9793, pp. 227–238. Springer, Heidelberg (2016). doi:10.1007/978-3-319-42417-0_21

    Chapter  Google Scholar 

  19. Clark, A.J., Moore, J.M., Wang, J., Tan, X., McKinley, P.K.: Evolutionary design and experimental validation of a flexible caudal fin for robotic fish. Artif. Life 13, 325–332 (2012)

    Google Scholar 

  20. Corucci, F., Calisti, M., Laschi, C.: Novelty-based evolutionary design of morphing underwater robots. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 145–152 (2015)

    Google Scholar 

  21. Koos, S., Cully, A., Mouret, J.B.: Fast damage recovery in robotics with the T-resilience algorithm. Int. J. Robot. Res. 32(14), 1700–1723 (2013)

    Article  Google Scholar 

  22. Deb, K., Srinivasan, A.: Innovization: discovery of innovative design principles through multiobjective evolutionary optimization. In: Knowles, J., Corne, D., Deb, K., Chair, D. (eds.) Multiobjective Problem Solving from Nature. Natural Computing Series, pp. 243–262. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  24. Ruud, E.L., Samuelsen, E., Glette, K.: Memetic robot control evolution and adaption to reality. In: Proceedings of ICES: 2016 IEEE International Conference on Evolvable Systems (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tønnes F. Nygaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Nygaard, T.F., Samuelsen, E., Glette, K. (2017). Overcoming Initial Convergence in Multi-objective Evolution of Robot Control and Morphology Using a Two-Phase Approach. In: Squillero, G., Sim, K. (eds) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science(), vol 10199. Springer, Cham. https://doi.org/10.1007/978-3-319-55849-3_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55849-3_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55848-6

  • Online ISBN: 978-3-319-55849-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics